Please wait a minute...
金属学报  2014, Vol. 50 Issue (3): 269-274    DOI: 10.3724/SP.J.1037.2013.00571
  本期目录 | 过刊浏览 |
微米/亚微米双峰尺度奥氏体组织形成机制*
武会宾1(), 武凤娟1, 杨善武2, 唐荻1
1 北京科技大学高效轧制国家工程研究中心, 北京100083
2 北京科技大学材料科学与工程学院, 北京 100083
THE FORMATION MECHANISM OF AUSTENITE STRUCTURE WITH MICRO/SUB-MICROMETER BIMODAL GRAIN SIZE DISTRIBUTION
WU Huibin1(), WU Fengjuan1, YANG Shanwu2, TANG Di1
1 National Engineering Research Center for Advanced Rolling Technology, University of Science and Technology Beijing, Beijing 100083
2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

武会宾, 武凤娟, 杨善武, 唐荻. 微米/亚微米双峰尺度奥氏体组织形成机制*[J]. 金属学报, 2014, 50(3): 269-274.
Huibin WU, Fengjuan WU, Shanwu YANG, Di TANG. THE FORMATION MECHANISM OF AUSTENITE STRUCTURE WITH MICRO/SUB-MICROMETER BIMODAL GRAIN SIZE DISTRIBUTION[J]. Acta Metall Sin, 2014, 50(3): 269-274.

全文: PDF(9155 KB)   HTML
摘要: 

通过冷轧变形结合变形后在820~870 ℃退火, 在316L奥氏体不锈钢中实现了微米(3~5 μm为主)和亚微米(300~500 nm为主)双峰晶粒尺度分布. 在奥氏体冷变形过程中, 形变孪生与应变诱导马氏体相变都集中发生于大变形阶段, 据此推断奥氏体形变孪生是产生应变诱导马氏体的微观机制. 在820~870 ℃范围内退火时, 样品的硬度和晶粒尺寸分布几乎保持恒定. 通过对退火过程中变形奥氏体和应变诱导马氏体演化驱动力的比较分析, 推断奥氏体双峰尺度晶粒尺寸分布的来源是: 微米尺度晶粒来自冷变形时未转变的变形奥氏体的再结晶, 而亚微米尺度晶粒主要由应变诱导马氏体逆转变而产生.

关键词 微米/亚微米双峰晶粒尺寸分布原位拉伸形成机制    
Abstract

Nano-crystalline (<100 nm) and ultrafine grained (100~500 nm) materials have high strength and toughness, but its work hardening ability and uniform elongation decreased relative to the coarse grained material. Through the deformation, phase transformation and recrystallisation combination mode of development of bimodal grain size distribution of ferrite, bainite steel, the elongation rate is greatly improved. These studies are generally in order to improve the mechanical properties of material through change microstructure, but lack of study for the bimodal grain size distribution formation mechanism. This research work by cold rolling with annealing at 820~870 ℃, in 316L austenitic stainless steel to achieve micro (3~5 μm) and sub-micro (300~500 nm) bimodal grain size distribution. In the austenite deformation process, deformation twinning and strain induced martensite transformation occurred in large deformation stage. Accordingly inferred austenite deformation twinning is the micro mechanism of strain induced martensite. Annealing at 820~870 ℃, the hardness of the samples and the grain size distribution remains nearly constant. Through the comparative analysis of induced martensite austenite evolution driving force and strain deformation during annealing, determined the source of bimodal grain size distribution. The micro scale grains came from the recrystallization of deformed austenite in the cold deformation does not change, and sub-micron grain size is mainly composed of strain induced martensite reverse transformation.

Key wordsmicro/sub-micrometer    bimodal grain size distribution    in situ tensile    formation mechanism
收稿日期: 2013-09-09     
ZTFLH:  TG142.7  
基金资助:* 国家科技重大专项资助项目2011ZX05016-004
作者简介: null

武会宾, 男, 1977年生, 副教授, 博士

图1  
图2  
图3  
图4  
图5  
图6  
图7  
[1] Hwang B, Lee C G. Mater Sci Eng, 2010; A527: 4341
[2] Chen J, Li F, Liu Z Y, Tang S, Wang G D. ISIJ Int, 2013; 53: 1070
[3] Weng Y Q. Ultrafine Grained Steel. Beijing: Metallurgical Industry Press, 2003: 9
[3] (翁宇庆. 超细晶钢. 北京: 冶金工业出版社, 2003: 9)
[4] Misra R D K, Zhang Z, Venkatasurya P K C, Somani M C, Karjalainen L P. Mater Sci Eng, 2011; A528: 1889
[5] Garcia M C, Caballero F G, Bhadeshia H K D H. ISIJ Int, 2003; 43: 1238
[6] Huang C X, Yang G, Gao Y L, Wu S D, Li S X, Zhang Z F. Philos Mag, 2007; 87: 4949
[7] Huang C X, Gao Y L, Yang G, Wu S D, Li G Y, Li S X. J Mater Res, 2006; 21: 1687
[8] Yang G, Huang C X, Wu S D, Zhang Z F. Acta Metall Sin, 2009; 45: 906
[8] (杨 钢, 黄崇湘, 吴士丁, 张哲峰. 金属学报, 2009; 45: 906)
[9] Etiennea A, Radigueta B, Genevoisa C, Bretona J M, Valievb R, Pareigea P. Mater Sci Eng, 2010; A527: 5805
[10] Misra R D K, Zhang Z, Jia Z, Somani M C, Karjalainen L P. Scr Mater, 2010; 63: 1057
[11] Zhang K M, Zou J X. Thin Solid Films, 2012; 526: 28
[12] Rezaee A, Kermanpur A, Najafizadeh A, Moallemi M. Mater Sci Eng, 2011; A528: 5025
[13] Misra R D K, Zhang Z, Jia Z, Surya V, Somani M C, Karjalainen L P. Mater Sci Eng, 2011; A528: 6958
[14] Koeh C C. J Metast Nanocryst Mater, 2003; 18: 9
[15] KarimPoor A A, Erb U, Austetal K T. Mater Sci Forum, 2002; 415: 38
[16] Wang Y M, Chen M W, Zhou F. Nature, 2002; 419: 912
[17] Wang T S, Zhang F C, Zhang M, Lvb B. Mater Sci Eng, 2008; A485: 456
[18] Alizamini H A, Militzer M, Poole W J. Scr Mater, 2007; 57: 1065
[19] Chakrabarti D, Davis C, Strangwood M. Mater Charact, 2007; 58: 423
[1] 康举,梁苏莹,吴爱萍,李权,王国庆. 2219铝合金搅拌摩擦焊中的局部液化现象及对接头力学性能的影响[J]. 金属学报, 2017, 53(3): 358-368.
[2] 许志武,马志鹏,闫久春,张誉喾,张旭昀. Ti/Al异种合金接头原位拉伸应变场及断裂行为的研究*[J]. 金属学报, 2016, 52(11): 1403-1412.
[3] 康举,李吉超,冯志操,邹贵生,王国庆,吴爱萍. 2219-T8铝合金搅拌摩擦焊接头力学和应力腐蚀性能薄弱区研究*[J]. 金属学报, 2016, 52(1): 60-70.
[4] 石晶,郭振玺,隋曼龄. a-Ti在原位透射电镜拉伸变形过程中位错的滑移系确定*[J]. 金属学报, 2016, 52(1): 71-77.
[5] 郭雄,林鑫,汪志太,曹永青,彭东剑,黄卫东. 深过冷Ni-30Sn合金凝固组织演化及反常共晶的形成机制[J]. 金属学报, 2013, 29(4): 475-482.
[6] 王向杰 游国强 张均成 龙思远. 压铸AZ91D镁合金母材气孔在重熔过程的遗传性研究[J]. 金属学报, 2012, 48(12): 1437-1445.
[7] 沈连成; 何健英; 宿彦京; 褚武扬; 乔利杰 . Ni2MnGa铁磁形状记忆合金开裂的原位研究[J]. 金属学报, 2006, 42(8): 810-814 .
[8] 李金许; 褚武扬; 高克玮; 乔利杰 . 块状非晶剪切带和微裂纹形核扩展的SEM原位研究[J]. 金属学报, 2003, 39(4): 359-363 .
[9] 陆永浩; 乔利杰; 褚武扬 . Cu-Ni-Al形状记忆合金形变、相变以及裂纹形核的相互关系[J]. 金属学报, 2001, 37(7): 686-690 .
[10] 单智伟; 杨继红 . 单晶Ni3Al裂纹扩展的TEM原位观察[J]. 金属学报, 2000, 36(3): 262-267 .
[11] 吕铮;徐永波;胡壮麒. 钴基高温合金裂尖塑性区位错结构的原位观察[J]. 金属学报, 1998, 34(2): 129-133.
[12] 张静武;刘文昌;段志翔;郑炀曾. 22Mn-13Cr-5Ni-0.2N钢裂纹Z字形扩展的TEM原位分析[J]. 金属学报, 1997, 33(9): 927-932.
[13] 熊惟皓;胡镇华;崔崑. Ti(C,N)基金属陶瓷相界面层微晶结构的形成[J]. 金属学报, 1997, 33(5): 473-478.
[14] 李红旗;陈奇志;褚武扬. 不锈钢微裂纹形核扩展的TEM原位观察[J]. 金属学报, 1996, 32(11): 1159-1164.
[15] 朱维斗;顾海澄;郭延东. Ti-1023合金拉伸试验的电镜原位观察[J]. 金属学报, 1994, 30(10): 463-468.