Please wait a minute...
金属学报  2013, Vol. 29 Issue (4): 483-488    DOI: 10.3724/SP.J.1037.2012.00620
  论文 本期目录 | 过刊浏览 |
δ相对GH4169合金高温拉伸变形行为的影响
张海燕1),张士宏2),程明2)
1) 宁波工程学院机械工程学院, 宁波 315016
2)中国科学院金属研究所, 沈阳 110016)
EFFECT OF δ PHASE ON THE TENSILE DEFORMATION BEHAVIOR OF GH4169 ALLOY AT HIGH TEMPERATURE
ZHANG Haiyan1),ZHANG Shihong2), CHENG Ming2)
1)School of Mechanical Engineering, Ningbo University of Technology, Ningbo 315016
2)Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
全文: PDF(2016 KB)  
摘要: 

针对GH4169合金的Delta工艺, 通过950 ℃高温拉伸实验研究了δ相对GH4169合金的高温拉伸变形行为的影响. 结果表明: 初始δ相含量为8.21%的GH4169合金的拉伸应力-应变曲线为典型的弹性-均匀塑性型; 且在均匀塑性变形阶段表现为2个不同的变形阶段, 其中第1阶段的加工硬化指数n为0.494, 大于第2阶段的加工硬化指数0.101; 其拉伸断裂机制为延性断裂的微孔聚集型断裂机制, 其中δ相和碳化物是变形断裂中微孔形成的核心, 因此δ相的存在使得合金的高温塑性降低, 在GH4169合金的Delta工艺中必须控制δ相的析出含量.

关键词 GH4169合金δDelta工艺加工硬化    
Abstract

GH4169 alloy is an important material used for aviation and aerospace engines because of its excellent mechanical properties in the temperature range from -253 ℃ to 650 ℃. In order to improve the safety and reliability of engines, it is crucial to obtain the forging with a uniform and fine microstructure. Generally, theforgings with large size and complex shape, such as turbine disks and engine shafts, are manufactured by multi-stage hot working processes. In addition, the microstructure of the alloy is sensitive to the hot deformation parameters. Therefore, the defects of coarse grain and duplex grain always appear in the forgings. As the δ phase in the alloy can control grain growth through the strong pinning effect, the Delta process (DP) has been developed, which uses an intentional δ phase precipitation cycle and subsequent thermomechanical processing to produce uniform fine grain billet and bar stock. In this work, for the DP of GH4169 alloy, the effect of δ phase on the tensile deformation behavior of GH4169 alloy at high temperature was studied by the tensile tests at 950 ℃. The result indicated that the tensile stress-strain curve of the GH4169 alloy with 8.21% pre-precipitated δ phase was the elastic-uniform plastic curve, and there were two different deformation processes during the uniform plastic deformation stage. The strain hardening exponent in the first deformation process was 0.494, which was higher than 0.101 in the second  process. The fracture mechanism for the pre-precipitated δ phase alloy was microvoid coalescence ductile fracture, and the δ phase and carbide were the nucleuses for the formation of micropores. Thus, the existence of the δ phase made the high-temperature plasticity of GH4169 alloy decrease, and the content of the pre-precipitated δ phase must be controlled in the DP of GH4169 alloy.

Key wordsGH4169 alloy    δ phase, Delta process    workhardening
收稿日期: 2012-10-17     
基金资助:

浙江省自然科学基金项目LQ12E05001和宁波市自然科学基金项目2011A610157资助

通讯作者: 张海燕     E-mail: zzhanghaiyan@gmail.com
作者简介: 张海燕, 女, 1981年生, 博士, 讲师

引用本文:

张海燕,张士宏,程明. δ相对GH4169合金高温拉伸变形行为的影响[J]. 金属学报, 2013, 29(4): 483-488.
ZHANG Haiyan, ZHANG Shihong, CHENG Ming. EFFECT OF δ PHASE ON THE TENSILE DEFORMATION BEHAVIOR OF GH4169 ALLOY AT HIGH TEMPERATURE. Acta Metall Sin, 2013, 29(4): 483-488.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00620      或      https://www.ams.org.cn/CN/Y2013/V29/I4/483

[1] Hiroaki Y, Takeshi H, Tomohisa H, Sachihiro I, Hideaki S. In: Cesar J M A, Santos A D eds.,Proc 9th Int Conf on Numerical Methods in Industrial Processses, Porto,Portugal, 2007: 987


[2] Ruiz C, Obabueki A, Gillespie K. In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T,Kissinger R D, Klarstrom D L eds.,  Superalloys 1992, Warrendale, PA: TMS, 1992: 33

[3] Banik T, Mancuso S O, Maurer G E. In: Loria E A ed.,  Superalloys 718, 625, 706 and Various Derivatives,Warrendale, PA: TMS, 1994: 273

[4] Dix A W, Hyzak J M, Singh R P. In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T,Kissinger R D, Klarstrom D L eds.,  Superalloys 1992, Warrendale, PA: TMS, 1992: 23

[5] Bhowal P R, Schirra J J. In: Loria E A ed.,  Superalloys 718, 625, 706 and Various Derivatives,Warrendale, PA: TMS, 2001: 193

[6] Lu H J, Yao C G, Zhang K F, Jia X C.  Mater Mech Eng, 2003; 27(1): 15

(吕宏军, 姚草根, 张凯峰, 贾新朝. 机械工程材料, 2003; 27(1): 15)

[7] Luo Z J, Tang H, Zeng F C, Guo N C.  J Mater Process Technol, 1991; 28: 383

[8] Liu D, Luo Z J.  Chin J Rare Met, 2005; 29: 152

(刘东, 罗子健. 稀有金属, 2005; 29: 152)

[9] Yuan H, Liu W C.  Mater Sci Eng, 2005; A408: 281

[10] Wang Y, Zhen L, Shao W Z, Yang L, Zhang X M.  J Alloys Compd, 2009; 44: 341

[11] Wang Y, Shao W Z, Zhen L, Zhang B Y.  Mater Sci Eng, 2011; A528: 3218

[12] Cai D Y, Zhang W H, Nie P L, Liu W C, Yao M.  Mater Charact, 2007; 58: 220

[13] Desvallees Y, Bouzidi M, Bois F, Beaude N. In: Loria E A ed.,Superalloys 718, 625, 706 and Various Derivatives, Warrendale, PA: TMS, 1994: 281

[14] Zhang Y, Huang X B, Wang Y, Yu W C, Hu Z Q. In: Loria E A ed.,  Superalloys 718, 625, 706 and Various Derivatives, Warrendale, PA: TMS, 1997: 229

[15] Zhao D, Chaudhury P K. In: Loria E A ed.,  Superalloys 718, 625, 706 and Various Derivatives,Warrendale, PA: TMS, 1994: 303

[16] Sundararaman M, Mukhopadhyay P, Banerjee S. In: Loria E A ed.,  Superalloys 718, 625, 706 and Various Derivatives, Warrendale, PA: TMS, 1994: 419

[17] Thomas A, El-Wahabi M, Cabrera J M, Prado J M.  J Mater Process Technol, 2006; 177: 469

[18] Cheng M, Zhang H Y, Zhang S H.  J Mater Sci, 2012; 47: 251

[19] Liu W C, Xiao F R, Yao M.  J Mater Lett, 1997; 16: 769

[20] Liu W C, Xiao F R, Yao M, Yuan H.  J Mater Sci Lett, 1998; 17: 245

[21] Wang Y, Shao W Z, Zhen L, Yang C, Zhang X M.  J Alloys Compd, 2009; 471: 331

[22] Liu H W.  Mechanics of Materials I. 5th Ed., Beijing: Higher Education Press, 2011: 20

(刘鸿文. 材料力学I. 第5版, 北京: 高等教育出版社, 2011: 20)

[23] Hollomon J H.  Trans AIME, 1945; 162: 268

[24] Liu J K, Jin M, Jiang Z H, Zhang L J.  Chin J Mech Eng, 1990; 26(5): 71

(刘景科, 金满, 江中浩, 张连进. 机械工程学报, 1990; 26(5): 71)

[25] Cai M H, Ding H, Zhang J S, Li L, Tang Z Y.  Chin J Mater Res, 2009; 23: 83

(蔡明晖, 丁桦, 张建苏, 李龙, 唐正友. 材料研究学报, 2009; 23: 83)

[26] Sundararaman M, Mukhopadhyay P, Banerjee S.  Metall Trans, 1988; 19A: 453

[27] Collier J P, Wong S H, Phillips J C, Tien J K.  Metall Trans, 1988; 19A: 1657

[28] Cui Z Q.  Metallography and Heat Treatment. Beijing: China Machine Press, 2001: 183

(崔忠圻. 金属学与热处理. 北京: 机械工业出版社, 2001: 183)

[29] Pan J S, Tong J M, Tian J M.  Fundamentals of Material Science.Beijing: Tsinghua University Press, 1998: 200

(潘金生, 仝健民, 田健民. 材料科学基础. 北京: 清华大学出版社, 1998: 200)

[30] Liu R T, Liu W B, Liu J Y.  Mechanical Property of Engineering Material. Harbin: Harbin Institute of Technology Press, 2001: 45

(刘瑞堂, 刘文博, 刘锦云. 工程材料力学性能. 哈尔滨: 哈尔滨工业大学出版社, 2001: 45)

[31] Chen W, Chaturvedi M C. In: Loria E A ed.,  Superalloys 718, 625, 706 and Various Derivatives,Warrendale, PA: TMS, 1994: 567

[32] Zhang H Y, Zhang S H, Cheng M.  Acta Metall Sin, 2009; 45: 1451

(张海燕, 张士宏, 程明. 金属学报, 2009; 45: 1451)
[1] 王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
[2] 王磊, 安金岚, 刘杨, 宋秀. 多场耦合作用下GH4169合金变形行为与强韧化机制[J]. 金属学报, 2019, 55(9): 1185-1194.
[3] 金淼, 李文权, 郝硕, 梅瑞雪, 李娜, 陈雷. 固溶温度对Mn-N型双相不锈钢拉伸变形行为的影响[J]. 金属学报, 2019, 55(4): 436-444.
[4] 侯陇刚, 刘明荔, 王新东, 庄林忠, 张济山. 高强7050铝合金超低温大变形加工与组织、性能调控[J]. 金属学报, 2017, 53(9): 1075-1090.
[5] 王建国,刘东,杨艳慧. GH4169合金非均匀组织在加热过程中的演化机理*[J]. 金属学报, 2016, 52(6): 707-716.
[6] 安金岚,王磊,刘杨,胥国华,赵光普. 长期时效对GH4169合金组织演化及低周疲劳行为的影响*[J]. 金属学报, 2015, 51(7): 835-843.
[7] 王晓钢,姜潮,韩旭. Ni单晶体塑性应变的非均匀性与加工硬化*[J]. 金属学报, 2015, 51(12): 1457-1464.
[8] 张盛华,王培,李殿中,李依依. ZG06Cr13Ni4Mo马氏体不锈钢中TRIP效应的同步辐射高能X射线原位研究*[J]. 金属学报, 2015, 51(11): 1306-1314.
[9] 王磊,安金岚,刘杨,宋秀,胥国华,赵光普. 静电场处理对GH4169合金中d相析出行为的影响[J]. 金属学报, 2015, 51(10): 1235-1241.
[10] 马广财, 付华萌, 王峥, 许庆亮, 张海峰. 304不锈钢毛细管/Zr53.5Cu26.5Ni5Al12Ag3块体非晶合金复合材料的制备与性能研究[J]. 金属学报, 2014, 50(9): 1087-1094.
[11] 邓德安, KIYOSHIMA Shoichi. 退火温度对SUS304不锈钢焊接残余应力计算精度的影响*[J]. 金属学报, 2014, 50(5): 626-632.
[12] 刘奋成, 林鑫, 余小斌, 黄春平, 黄卫东. 激光立体成形GH4169合金再结晶过程中的界面和晶体取向演化*[J]. 金属学报, 2014, 50(4): 463-470.
[13] 莫永达, 姜雁斌, 刘新华, 谢建新. 柱状晶组织HAl77-2铝黄铜的力学性能与加工硬化行为[J]. 金属学报, 2014, 50(11): 1367-1376.
[14] 赵征志, 佟婷婷, 赵爱民, 何青, 董瑞, 赵复庆. 1300 MPa级0.14C-2.72Mn-1.3Si钢的显微组织和力学性能及加工硬化行为[J]. 金属学报, 2014, 50(10): 1153-1162.
[15] 郑成思,李龙飞,杨王玥,孙祖庆. 微观组织对共析钢室温加工硬化行为的影响[J]. 金属学报, 2013, 49(3): 257-264.