Please wait a minute...
金属学报  2016, Vol. 52 Issue (8): 931-937    DOI: 10.11900/0412.1961.2015.00553
  论文 本期目录 | 过刊浏览 |
深过冷Al-70%Si合金的凝固特性与微观组织*
严军辉,坚增运(),朱满,常芳娥,许军锋
西安工业大学陕西省光电功能材料与器件重点实验室, 西安 710021
SOLIDIFICATION CHARACTERISTICS AND MICRO-STRUCTURE OF HIGH UNDERCOOLED Al-70%Si ALLOY
Junhui YAN,Zengyun JIAN(),Man ZHU,Fang'e CHANG,Junfeng XU
Shaanxi Province Key Laboratory of Photoelectric Functional Materials and Devices, Xi'an Technological University, Xi'an 710021, China
全文: PDF(1109 KB)   HTML
摘要: 

通过电磁悬浮(EML)熔炼设备对Al-70%Si合金进行深过冷处理, 利用高速摄影仪(HSC)和SEM分别对凝固过程和凝固后的组织进行了观测, 研究了不同过冷度下初生Si的生长规律. 结果表明, 过冷度对初生Si的生长有很大影响. 当过冷度较小时, 初生Si为粗大的长条状, 有特殊的边和面, 且具有明显的孪晶痕迹, 表现出小平面生长的特征; 当过冷度较大时, 初生Si为细小的枝晶和球状晶, 表面光滑, 表现出非小平面生长的特征; 当过冷度居于中间时, 初生Si为粗大的块状和规则排列的枝晶状, 块状有特殊的边和面, 枝晶表面光滑, 表现出小平面和非小平面混合生长的特征. 随着过冷度的增加, 初生Si的生长方式由小平面生长转变为中间方式生长, 再由中间方式生长转变为非小平面生长, 生长方式间发生转变的临界过冷度分别为122 和230 K.

关键词 Al-70%Si合金电磁悬浮高速摄影仪深过冷初生Si生长方式    
Abstract

High undercooling processing has long been studied, since crystal growth mode and microstructural evolution are dependent on the undercooling, ΔT. However, in traditional casting, the container wall acts as heterogeneous nucleation site and specimen undercooling is low, which makes it difficult to experimentally reveal the relationship between the crystal growth behavior and undercooling. In order to achieve different undercooling ranging from low to high, many methods have been proposed, such as drop-tube processing, flux processing and electromagnetic levitation (EML). The container wall effects on the purity of the specimen and on the heterogeneous nucleation of undercooled melt can be removed in these methods. Hence, melts can solid in homogeneous nucleation way and achieves high undercooling. Moreover, EML suspends melt droplet stably, and a freely suspended droplet gives the extra benefit to directly observe the solidification process by combining the levitation technique with proper diagnostic means. In this work, Al-70%Si alloy was undercooled by a laser heating EML. The solidification behavior of Al-70%Si alloy melts at different undercooling conditions was investigated during the solidification process by employing a high-speed camera (HSC). After the melts solidification, morphology on the surface of the samples was examined by SEM. The results show that undercooling has great effects on the growth of Si. The primary Si phases are coarse strip with special edges and faces, have obvious traces of twin, and show facet growth characteristic at low undercooling condition. However, the primary Si phases are dendrites and spherulites with smooth surface, and show non-faceted growth characteristic at high undercooling condition. Besides, the primary Si phases are coarse bulks with special edges and faces and dendrites with regular arrangement at moderate undercooling condition, which is the intermediary growth characteristic. As the undercooling increases, the primary Si is refined remarkably and the growth mode changes from facet growth to intermediary growth, and from intermediary growth to non-faceted growth. The critical undercoolings for the transition are 122 and 230 K, respectively. Furthermore, the critical undercoolings were also theoretically calculated using the physical and chemical parameter of Si, which are 108 and 209 K, respectively.

Key wordsAl-70%Si alloy    electromagnetic levitation    high-speed camera    high undercooling    primary Si    growth mode
收稿日期: 2015-10-30     
基金资助:* 国家重点基础研究发展计划项目2011CB610403及国家自然科学基金项目51171136, 51301125, 51401156和51371133资助

引用本文:

严军辉,坚增运,朱满,常芳娥,许军锋. 深过冷Al-70%Si合金的凝固特性与微观组织*[J]. 金属学报, 2016, 52(8): 931-937.
Junhui YAN, Zengyun JIAN, Man ZHU, Fang'e CHANG, Junfeng XU. SOLIDIFICATION CHARACTERISTICS AND MICRO-STRUCTURE OF HIGH UNDERCOOLED Al-70%Si ALLOY. Acta Metall Sin, 2016, 52(8): 931-937.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2015.00553      或      https://www.ams.org.cn/CN/Y2016/V52/I8/931

图1  Al-70%Si熔化、凝固过程温度-时间曲线
图2  高速摄影仪记录的不同过冷度下Al-70%Si合金中初生Si的生长形貌
图3  不同过冷度Al-70%Si合金中初生Si表面的SEM像
[1] Li D, Mao X M, Fu H Z.J Mater Sci Lett, 1994; 13: 1066
[2] Li D, Herlach D M. Europhys Lett, 1996; 34: 423
[3] Jian Z Y, Nagashio K, Kuribayashi K.Metall Mater Trans, 2002; 33A: 2947
[4] Jian Z Y, Kuribayashi K, Jie W Q, Chang F E. Acta Mater, 2006; 54: 3227
[5] Jian Z Y, Yang X Q, Chang F E, Jie W Q.Metall Mater Trans, 2010; 41A: 1826
[6] Aoyama T, Kuribayashi K. Mater Sci Eng, 2001; A304-306: 231
[7] Liu R P, Herlach D M, Vandyoussefi M, Greer A L.Metall Mater Trans, 2004; 35A: 1067
[8] Wang Q, Liu R P, Qian Y Q, Lou D C, Su Z B, Ma M Z, Wang W K, Panofen C, Herlach D M.Scr Mater, 2006; 54: 37
[9] Panofen C, Herlach D M. Mater Sci Eng, 2007; A449-451: 699
[10] Wen Q, Jian Z Y, Zhu M, Chang F E, Dang B .Acta Metall Sin, 2014; 50: 610
[10] (文强, 坚增运, 朱满, 常芳娥, 党博. 金属学报, 2014; 50: 610)
[11] Aoyama T, Takamura Y, Kuribayashi K.Jpn J Appl Phys, 1998; 37: L687
[12] Aoyama T, Takamura Y, Kuribayashi K.Metall Mater Trans, 1999; 30A: 3013
[13] Planck M.Ann Phys-Berlin, 1901; 309: 553
[14] Aoyama T, Kuribayashi K.Acta Mater, 2000; 48: 3739
[15] Colligan G A, Bayles B S.Acta Metall, 1962; 10: 895
[16] Nagashio K, Okamoto H, Kuribayashi K, Jimbo I.Metall Mater Trans, 2005; 36A: 3407
[17] Aoyama T, Takamura Y, Kuribayashi T.Metall Mater Trans, 1999; 30A: 1333
[18] Li D, Herlach D M.Phys Rev Lett, 1996; 77: 1801
[19] Jackson K A.Liquid Metals and Solidifation. Ohio: Americal Society for Metals, 1958: 174
[20] Nagashio K, Kuribayashi K.Acta Mater, 2005; 53: 3021
[21] Wang R Y, Lu W H, Hogan L M.J Crystal Growth, 1999; 207: 43
[22] Cahn J W, Hillig W B, Sears S W.Acta Metall, 1964; 12: 1412
[23] Jian Z Y, Kuribayashi K, Jie W Q.Acta Mater, 2004; 52: 3323
[24] Lide D R.Handbook of Chemistry and Physics. Florida: CRC Press, 1989: B2
[25] Jian Z Y, Kuribayashi K, Jie W Q.Mater Trans JIM, 2002; 43: 721
[26] Turkdogen E T.Physical Chemistry of High Temperature Technology .New York: Academic Press, 1980: 61
[27] Gündüz M, Hunt J D.Acta Metall, 1985; 33: 1651
[1] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[2] 李金富, 周尧和. 液态金属深过冷快速凝固过程中初生固相的重熔[J]. 金属学报, 2018, 54(5): 627-636.
[3] 朱姜蕾, 王庆, 王海鹏. 深过冷液态金属Cu的热物理性质和原子分布[J]. 金属学报, 2017, 53(8): 1018-1024.
[4] 文强, 坚增运, 朱满, 常芳娥, 党博. RE对过共晶Al-80%Si合金凝固特性的影响*[J]. 金属学报, 2014, 50(5): 610-618.
[5] 郭雄,林鑫,汪志太,曹永青,彭东剑,黄卫东. 深过冷Ni-30Sn合金凝固组织演化及反常共晶的形成机制[J]. 金属学报, 2013, 29(4): 475-482.
[6] 常芳娥 赵志伟 朱满 李娜 方雯 董广志 坚增运. 深过冷Ni-21.4%Si共晶合金的凝固特性研究[J]. 金属学报, 2012, 48(7): 875-881.
[7] 穆丹宁 杨长林 魏晓伟 刘峰. 深过冷铁钴基块体合金的细晶化研究[J]. 金属学报, 2012, 48(12): 1409-1414.
[8] 周圣银 胡锐 蒋力 李金山 寇宏超 常辉 周廉. 深过冷凝固Co80Pd20合金中的枝晶生长[J]. 金属学报, 2011, 47(4): 391-396.
[9] 周俊 谢发勤 吴向清 张军. DZ125高温合金深过冷凝固组织转变规律[J]. 金属学报, 2009, 45(4): 385-389.
[10] 杨长林; 杨根仓; 刘峰; 周尧和 . Fe-B共晶合金的净化及超过冷的获得[J]. 金属学报, 2008, 44(8): 956-960 .
[11] 刘志光; 柴丽华; 陈玉勇; 孔凡涛 . 快速凝固TiAl化合物的研究进展[J]. 金属学报, 2008, 44(5): 569-573 .
[12] 刘宁; 杨根仓; 刘峰; 陈豫增; 杨长林; 周尧和 . 深过冷Fe-Co合金的凝固规律[J]. 金属学报, 2007, 43(5): 449-453 .
[13] 陈豫增; 杨根仓; 刘峰; 刘宁; 谢辉; 周尧和 . 过冷 Fe75Ni25合金晶粒细化机制的研究[J]. 金属学报, 2006, 42(7): 703-707 .
[14] 郭学锋; 刘峰 . 过冷Cu70Ni30熔体凝固组织的第一类粒状晶[J]. 金属学报, 2000, 36(4): 351-355 .
[15] 张振忠; 宋广生; 杨根仓 . 深过冷Fe-B-Si共晶块体纳米材料的凝固组织特征[J]. 金属学报, 1999, 35(7): 693-697 .