Please wait a minute...
金属学报  2015, Vol. 51 Issue (7): 835-843    DOI: 10.11900/0412.1961.2014.00626
  本期目录 | 过刊浏览 |
长期时效对GH4169合金组织演化及低周疲劳行为的影响*
安金岚1,王磊1(),刘杨1,胥国华2,赵光普2
2 钢铁研究总院高温材料研究所, 北京 100081
INFLUENCES OF LONG-TERM AGING ON MICRO- STRUCTURE EVOLUTION AND LOW CYCLE FATIGUE BEHAVIOR OF GH4169 ALLOY
Jinlan AN1,Lei WANG1(),Yang LIU1,Guohua XU2,Guangpu ZHAO2
1 Key Lab for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819
2 High Temperature Material Research Institute, Central Iron and Steel Research Institute, Beijing 100081
全文: PDF(8927 KB)   HTML
摘要: 

研究了GH4169合金在750 ℃长期时效中的组织演化及其对低周疲劳行为的影响规律. 结果表明, 随时效时间的延长, 合金中g″相尺寸逐渐增大、体积分数减少; d相尺寸增大、体积分数增加; 长期时效后合金低周疲劳最大循环应力响应降低, 疲劳寿命缩短. 随循环周次的增加, 合金循环应力响应均依次呈循环硬化、稳定、而后软化的特征. 合金时效过程中g″相尺寸增大和体积分数降低, 导致其对合金的强化效果减弱, 由此循环应变的应力响应降低; 而时效中长针状d相及其周围的无析出带的生成成为裂纹扩展路径, 导致疲劳寿命下降.

关键词 GH4169合金长期时效组织演化低周疲劳    
Abstract

GH4169 superalloy is one kind of important metallic materials used for manufacturing turbine discs in aero-engine. In order to meet the demand of higher strength, high ratio alloying elements have to be added, resulting in the complex microstructure evolution during the long-term service at elevated temperature. Furthermore, the turbine disc usually bears overloading which will lead to the low cycle fatigue (LCF) damage in real working and result in fatal security problem. Besides, it is meaningful to decide the relationship between the microstructure evolution and performance degradation. In the present work, microstructure evolution and LCF behavior of GH4169 alloy during long-term aging were investigated. The microstructure evolutions of GH4169 alloy during long-term aging at 750 ℃ for 500, 1000, 1500 and 2000 h and the influences of long-term aging on the LCF behavior were investigated. The results show that the size of g″ phases increases and the volume fraction decreases with the increase of aging time, compared with the increase of both size and volume fraction of d phases. Both the fatigue strength and fatigue life of the alloy decrease with the increase of aging time. For the specimen aged for the same time, the cyclic stress firstly contributes to cyclic hardening, then cyclic stability, and finally cyclic softening with the increase of cyclic numbers. It is found that the decrease of cyclic stress contribution is slightly effected by the size of g″ phases increase and volume fraction decrease after long-term aging. Therefore, the LCF life of the alloy decreases since the crack easily propagates along with the long needle-like d phases and the g″ phases precipitate free zones.

Key wordsGH4169 superalloy    long-term aging    microstructure evolution    low cycle fatigue
    
基金资助:* 国家高技术研究发展计划项目2012AA03A513和教育部资助技术项目625010337资助

引用本文:

安金岚,王磊,刘杨,胥国华,赵光普. 长期时效对GH4169合金组织演化及低周疲劳行为的影响*[J]. 金属学报, 2015, 51(7): 835-843.
Jinlan AN, Lei WANG, Yang LIU, Guohua XU, Guangpu ZHAO. INFLUENCES OF LONG-TERM AGING ON MICRO- STRUCTURE EVOLUTION AND LOW CYCLE FATIGUE BEHAVIOR OF GH4169 ALLOY. Acta Metall Sin, 2015, 51(7): 835-843.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2014.00626      或      https://www.ams.org.cn/CN/Y2015/V51/I7/835

图1  GH4169合金在750 ℃时效不同时间的OM像
图2  GH4169 合金在750 ℃时效不同时间后g’和g”相的形貌
图3  GH4169合金在750 ℃时效不同时间后d相的形貌
Aging time Size of g ′ phase Size of g " phase Volume fraction of g " phase Volume fraction of d phase
h nm nm % %
SHT 12.4[28] 19.9 15.9[25-28] 0
500 69.9 425.9 18.1 3.5
1000 86.9 512.4 15.9 8.2
1500 101.8 713.0 6.4 17.1
2000 127.9 779.3 4.0 19.4
表1  GH4169合金在750 ℃长期时效中析出相的尺寸和体积分数随时效时间的变化
Area Al Ti Cr Mn Fe Co Ni Nb Mo
PFZ 1.43 1.22 20.67 0.29 20.39 1.97 49.96 2.20 1.86
d phase 0.57 2.60 3.72 0.15 4.71 1.31 67.87 17.50 1.57
表2  GH4169合金在750 ℃时效500 h后d相及其周围无析出带的成分
图4  GH4169合金在750 ℃时效不同时间后的循环应力响应曲线
Aging time / h Max cyclic stress / MPa Low cycle fatigue life / cyc
SHT 927 8504
500 850 7247
1000 763 6848
1500 705 5816
2000 627 5533
表3  GH4169合金在750 ℃时效不同时间后的最大循环应力和疲劳寿命
图5  GH4169合金在750 ℃时效1500 h后的位错组态
图6  GH4169合金在750 ℃时效不同时间后的稳定循环应力-应变响应曲线
图7  GH4169合金在750 ℃长期时效后的低周疲劳断口裂纹源区形貌
图8  GH4169合金在750 ℃长期时效后的低周疲劳断口稳定扩展区形貌
图9  GH4169合金在750 ℃时效2000 h后低周疲劳断口附近横截面形貌
图10  GH4169合金在750 ℃长期时效后的低周疲劳断口快速扩展区形貌
图11  GH4169合金在750 ℃时效2000 h后的低周疲劳断口及断口附近横截面和纵截面形貌
[1] Huang Q Y,Li H K. Superalloy. Beijing: Metallurgy Industry Press, 2000: 1 (黄乾尧,李汉康. 高温合金. 北京: 冶金工业出版社, 2000: 1)
[2] Leo P D G, Walsh M J, Maclachlan D, Korsunsky A M. Int Fatigue, 2009; 31: 1966
[3] Wang Y, Lin L, Shao W Z, Zhen L, Zhang X M. Trans Mater Heat Treat, 2007; 28(suppl): 176
[4] Medeiros S C, Prasad Y V R K, Frazier W G, Srinivasan R. Mater Sci Eng, 2003; A193: 198
[5] Tian S G, Wang X, Xie J, Liu C, Guo Z G, Liu J, Sun W R. Acta Metall Sin, 2013; 49: 845 (田素贵, 王 欣, 谢 君, 刘 臣, 郭忠革, 刘 姣, 孙文儒. 金属学报, 2013; 49: 845)
[6] Zhang H Y, Zhang S H, Zhang W H, Cheng M, Wang Z T. J Plast Eng, 2007; 14(4): 69 (张海燕, 张士宏, 张伟红, 程 明, 王忠堂. 塑性工程学报, 2007; 14(4): 69)
[7] Yang Y R, Liang X F, Cai B C, Huang F X. J Aeronaut Mater, 1996; 16(2): 38 (杨玉荣, 梁学锋, 蔡伯成, 黄福祥. 航空材料学报, 1996; 16(2): 38)
[8] Jiang H P. Gas Turbine Experiment Res, 2002; 15(4): 1 (江和甫. 燃气涡轮试验与研究, 2002;15(4): 1)
[9] Liu F, Sun W R,Yang S L, Li Z, Guo S R, Yang H C, Hu Z Q. Acta Metall Sin, 2008; 44: 791 (刘 芳, 孙文儒, 杨树林, 李 站, 郭守仁, 杨洪才, 胡壮麒. 金属学报, 2008; 44: 791)
[10] Dong J X, Bai Y Q, Xu Z C, Xie X S, Zhang S H. J Univ Sci Technol Beijing, 1993; 15: 567 (董建新, 白元强, 徐志超, 谢锡善, 章守华. 北京科技大学学报, 1993; 15: 567)
[11] Azadian S, Wei L Y, Warren R. Mater Charact, 2004; 53: 7
[12] Tang J X, Lu S. J Aerospace Power, 2006; 21: 706 (唐俊星, 陆 山. 航空动力学报, 2006; 21: 706)
[13] Miller H E, Chamber W L. In: Sims C T, Ctoloff N S, Hagel W C eds., Superalloy II, New York: John-Wiley & Sons, 1987: 18
[14] Coffin L F. In: Carden A E, McEvily A J, Wells C H eds., Fatigue at Elevated Temperatures, Baltimore: ASTM, 1973: 112
[15] Gell M, Leverant G R. In: Carden A E, McEvily A J, Wells C H eds., Fatigue at Elevated Temperatures, Baltimore: ASTM, 1973: 37
[16] Coffin L F Jr. Soc Mater Sci, Japan, 1971; 21: 30
[17] Merrick H K. Metall Trans, 1974; 5A: 891
[18] Fournier D, Pineau A. Metall Trans, 1977; 8A: 109
[19] Day M F, Thyomas G B. Met Sci, 1979; 13: 25
[20] Antolovich S D, Liu S, Baur R. Metall Trans, 1981; 12A: 473
[21] Yao J, Guo J T, Yuan C, Li Z J. Acta Metall Sin, 2005; 41: 357 (姚 俊, 郭建亭, 袁 超, 李志军. 金属学报, 2005; 41: 357)
[22] Xie X S, Dong J X, Fu S H, Zhang M C. Acta Metall Sin, 2010; 46: 1289 (谢锡善, 董建新, 付书红, 张麦仓. 金属学报, 2010; 46: 1289 )
[23] Wang K, Li M Q, Luo J, Li C. Mater Sci Eng, 2011; A528: 4723
[24] Xiao L, Chen D L. Scr Mater, 2004; 52: 603
[25] Deng Q, Zhuang J Y, Du J H. J Iron Steel Res, 1998; 10(2): 33 (邓 群, 庄景云, 杜金辉. 钢铁研究学报, 1998; 10(2): 33)
[26] Miller M K, Babu S S, Burke M G. Mater Sci Eng, 1999; A270: 14
[27] Miller M K. Micron, 2001; 32: 757
[28] Du J H, Lv X D, Den Q. Rare Met Mater Eng, 2014; 43: 1830
[29] Li S Q, Zhuang J Y, Yang J Y, Deng Q, Du J H, Xie X S, Li B, Xu Z C, Cao Z, SuZ Q, Jiang C Z. In: Loria E A ed., Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, PA: TMS, 1994: 545
[30] Collier J P, Wong S H. Metall Trans, 1988; 19A: 1657
[31] Dong J X, Xie X S, Xu Z C, Zhang S H, Chen M Z, Radavich J F. In: Loria E A ed., Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, PA: TMS, 1994: 649
[32] Wang L, Liu Y, Jin J C, Feng F, Lv X D, Zhang B J. J Iron Steel Res, 2011; 23(suppl 2): 213 (王 磊, 刘 杨, 晋俊超, 冯 飞, 吕旭东, 张北江. 钢铁研究学报, 2011; 23(增刊2): 213)
[33] Wang Y W, Yang L Y, You W, Bai B Z. Mater Sci Forum, 2005; 475-479: 3003
[34] Liu Y, Wang L, He S S, Feng F, Lv X D, Zhang B J. Acta Metall Sin, 2012; 48: 49 (刘 杨, 王 磊, 何思斯, 冯 飞, 吕旭东, 张北江. 金属学报, 2012; 48: 49)
[35] Wang L. Mechanical Properties of Materials. Shenyang: Northeastern University Press, 2014: 94 (王 磊. 材料的力学性能. 沈阳: 东北大学出版社, 2014: 94)
[36] An J L. Master Thesis, Northeastern University, Shenyang, 2014 (安金岚. 东北大学硕士学位论文, 沈阳, 2014)
[1] 张哲峰,邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏. 孪生诱发塑性钢拉伸与疲劳性能及变形机制[J]. 金属学报, 2020, 56(4): 476-486.
[2] 王磊, 安金岚, 刘杨, 宋秀. 多场耦合作用下GH4169合金变形行为与强韧化机制[J]. 金属学报, 2019, 55(9): 1185-1194.
[3] 黄太文,卢晶,许瑶,王栋,张健,张家晨,张军,刘林. ReTa对抗热腐蚀单晶高温合金900 ℃长期时效组织稳定性的影响[J]. 金属学报, 2019, 55(11): 1427-1436.
[4] 张宇, 王清, 董红刚, 董闯, 张洪宇, 孙晓峰. 基于团簇模型设计的镍基单晶高温合金(Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W)及其在900 ℃下1000 h的长期时效行为[J]. 金属学报, 2018, 54(4): 591-602.
[5] 马宗义, 商乔, 倪丁瑞, 肖伯律. 镁合金搅拌摩擦焊接的研究现状与展望[J]. 金属学报, 2018, 54(11): 1597-1617.
[6] 张哲峰, 刘睿, 张振军, 田艳中, 张鹏. 金属材料疲劳性能预测统一模型探索[J]. 金属学报, 2018, 54(11): 1693-1704.
[7] 骆良顺,刘桐,张延宁,苏彦庆,郭景杰,傅恒志. 定向凝固Al-Y合金组织演化规律及小平面相生长*I. Al-15%Y过共晶合金组织演化规律[J]. 金属学报, 2016, 52(7): 859-865.
[8] 王建国,刘东,杨艳慧. GH4169合金非均匀组织在加热过程中的演化机理*[J]. 金属学报, 2016, 52(6): 707-716.
[9] 孙文,秦学智,郭建亭,楼琅洪,周兰章. 铸造镍基高温合金中初生MC碳化物的退化过程和机理*[J]. 金属学报, 2016, 52(4): 455-462.
[10] 侯介山,郭建亭,袁超,周兰章. 一种抗热腐蚀铸造镍基高温合金中σ相的析出及回溶*[J]. 金属学报, 2016, 52(2): 168-176.
[11] 郝宪朝,张龙,熊超,马颖澈,刘奎. 760 ℃长期时效对一种Ni-Cr-W-Fe合金组织和力学性能的影响*[J]. 金属学报, 2015, 51(7): 807-814.
[12] 马文婧,柯常波,周敏波,梁水保,张新平. Sn/Cu互连体系界面和金属间化合物层Kirkendall空洞演化和生长动力学的晶体相场法模拟*[J]. 金属学报, 2015, 51(7): 873-882.
[13] 王磊,安金岚,刘杨,宋秀,胥国华,赵光普. 静电场处理对GH4169合金中d相析出行为的影响[J]. 金属学报, 2015, 51(10): 1235-1241.
[14] 孙文, 秦学智, 郭建亭, 楼琅洪, 周兰章. (W+Mo)/Cr比对铸造镍基高温合金时效组织和持久性能的影响[J]. 金属学报, 2015, 51(1): 67-76.
[15] 车欣, 梁兴奎, 陈丽丽, 陈立佳, 李锋. Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc)合金的显微组织及其低周疲劳行为*[J]. 金属学报, 2014, 50(9): 1046-1054.