Please wait a minute...
金属学报  2015, Vol. 51 Issue (1): 67-76    DOI: 10.11900/0412.1961.2014.00281
  本期目录 | 过刊浏览 |
(W+Mo)/Cr比对铸造镍基高温合金时效组织和持久性能的影响
孙文1,2, 秦学智2(), 郭建亭2, 楼琅洪2, 周兰章2
1 中国科学技术大学, 合肥 230022
2 中国科学院金属研究所, 沈阳 110016
EFFECTS OF (W+Mo)/Cr RATIO ON MICROSTRUC-TURAL EVOLUTIONS AND MECHANICAL PROPER-TIES OF CAST Ni-BASED SUPERALLOYS DURING LONG-TERM THERMAL EXPOSURE
SUN Wen1,2, QIN Xuezhi2(), GUO Jianting2, LOU Langhong2, ZHOU Lanzhang2
1 University of Science and Technology of China, Hefei 230022
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

孙文, 秦学智, 郭建亭, 楼琅洪, 周兰章. (W+Mo)/Cr比对铸造镍基高温合金时效组织和持久性能的影响[J]. 金属学报, 2015, 51(1): 67-76.
Wen SUN, Xuezhi QIN, Jianting GUO, Langhong LOU, Lanzhang ZHOU. EFFECTS OF (W+Mo)/Cr RATIO ON MICROSTRUC-TURAL EVOLUTIONS AND MECHANICAL PROPER-TIES OF CAST Ni-BASED SUPERALLOYS DURING LONG-TERM THERMAL EXPOSURE[J]. Acta Metall Sin, 2015, 51(1): 67-76.

全文: PDF(18347 KB)   HTML
摘要: 

利用真空冶炼制备了不同(W+Mo)/Cr比(质量比)的铸造镍基高温合金, 采用OM, SEM和TEM观察了合金试样的微观组织, 研究了(W+Mo)/Cr比对合金组织演化和持久性能的影响. 结果表明, (W+Mo)/Cr比对热处理态组织无明显影响, 主要组成相为g基体、g' 相、初生MC和晶界二次碳化物. 长期时效期间, 合金试样的组织演化主要包括g' 相粗化、拓扑密排相 (TCP) 相析出、MC分解和晶界粗化. 随(W+Mo)/Cr比降低, MC的热稳定性明显降低, 晶界粗化程度升高, 晶界碳化物发生了M6C→ M6C+M23C6→ M23C6的转变. 同时, TCP相的析出量明显减少. 当(W+Mo)/Cr比为0.22时, 无TCP相析出. 另外, (W+Mo)/Cr比由高于0.55降低至0.37时, TCP相的种类由m相转变为了ms相共存. g' 相和晶界粗化及TCP相的析出是引起合金持久性能降低的主要原因. 综合(W+Mo)/Cr比对合组织演化和持久性能的影响得出, (W+Mo)/Cr比约为0.37时, 合金具有最佳的持久性能.

关键词 镍基高温合金(W+Mo)/Cr比长期时效组织演化力学性能    
Abstract

The Ni-based superalloys are widely used as microstructural components of modern turbine engines due to its good high temperature strength, good fatigue and creep property and excellent hot-corrosion resistance. In order to increase their high temperature strength, more and more refractory elements, such as W and Mo, are added into these alloys while Cr content gradually decreases. During long-term aging, these alloys generally experience various microstructural changes, including coarsening of g' phase coarsening, formation of a continuous grain boundary (GB) carbide network, precipitation topologically close-packed (TCP) phase, and degeneration of MC carbide. However, there is limited available data about the effect of (W+Mo)/Cr ratios on the microstructural evolution of Ni-based superalloys. In this work, the cast Ni-based superalloys with different (W+Mo)/Cr ratios (mass ratios) are fabricated by vacuum induction furnace. After standard heat treated (1110 ℃, 4.5 h, air cooling+750 ℃, 10.5 h, air cooling), they are thermally exposed at 850 ℃ for different times. The stress-rupture tests are operated under the condition of 800 ℃, 294 MPa. Effects of (W+Mo)/Cr ratios on the microstructure evolutions and mechanical properties are investigated by the combination of OM, SEM, TEM and stress-rupture tests. The experiment results show that the (W+Mo)/Cr ratio has no obvious influence on the standard heat treated microstructure, which is mainly composed of g matrix, g' phase, MC carbide and secondary carbides distributing at grain boundaries. During long-term thermal exposure, the microstructure evolutions occur by g' phase coarsening, TCP phases formation, MC degeneration and grain boundary coarsening. The g' phase coarsening behavior is not affected obviously by the (W+Mo)/Cr ratio. However, the amount of TCP phases decreases significantly with decreasing of (W+Mo)/Cr ratio and the type of TCP phases transforms from m phase to coexist of m and s phases when (W+Mo)/Cr ratio decreases from 0.55 to 0.37. There are no TCP phases observed in the sample with (W+Mo)/Cr ratio of 0.22. The thermal stability of MC carbide is reduced obviously and the grain boundaries coarsen more severely by the decrease of (W+Mo)/Cr ratio. The degradation of stress-rupture property is attributed to the coarsening of g' phase and grain boundaries and the formation of TCP phases. Combined with the effect of (W+Mo)/Cr ratio on the solid solution strengthening, microstructure evolution and stress-rupture property, it can be concluded that the optimum stress-rupture property can be obtained when the (W+Mo)/Cr ratio is about 0.37.

Key wordsNi-based superalloy    (W+Mo)/Cr ratio    long-term aging    microstructural evolution    mechanical property
    
ZTFLH:  TA211.8  
基金资助:*国家自然科学基金项目51001101和国家高技术研究发展计划项目2012AA03A501资助
作者简介: null

孙文, 男, 1986年生, 博士生

Sample C Cr Al Ti Nb W Mo Fe Ni (W+Mo)/Cr Nv
A1 0.10 11.54 1.82 4.54 0.13 7.10 5.21 14.6 Bal. 1.07 2.34
A2 0.10 15.39 1.82 3.49 0.10 4.94 3.58 14.8 Bal. 0.55 2.32
A3 0.11 17.55 1.95 3.49 0.11 3.78 2.77 14.9 Bal. 0.37 2.41
A4 0.10 19.76 1.86 3.44 0.11 2.47 1.78 15.0 Bal. 0.22 2.44
表1  镍基高温合金的化学成分
图1  A1合金的典型热处理态组织
图2  不同合金试样中g' 相在时效不同时间后的SEM像
图3  850 ℃时效0.5×103 h后合金试样的微观组织
图4  850 ℃时效1×104 h后合金的组织形貌
图5  850 ℃时效1×103 h后合金中MC的分解形貌
图6  850 ℃时效1×104 h后合金中MC的分解形貌
图7  初生MC分解程度D随时效时间 t的变化
Sample Ti Nb Mo W Cr Ni Nb/Ti (Nb+Ti)/(W+Mo)
A1 47.45 4.39 15.50 28.60 1.53 2.50 0.09 1.18
A2 43.00 4.70 13.60 31.10 2.60 5.00 0.10 1.06
A3 50.10 5.00 12.95 27.70 1.60 2.69 0.10 1.36
A4 56.20 6.55 10.10 24.26 1.30 1.65 0.12 1.83
表2  MC的成分及热稳定性参数
图8  850 ℃时效1×104 h后合金试样的晶界形貌
图9  (W+Mo)/Cr比对合金持久寿命的影响
图10  850 ℃时效1×104 h后4个合金试样在800 ℃, 294 MPa下持久断裂的纵截面微观组织
[1] Guo J T. Materials Science and Engineering for Superalloys. Vol.1Beijing,: Science Press, 2008: 39
[1] (郭建亭.高温合金材料学(上册). 北京: 科学出版社, 2008: 39)
[2] Cai Y L, Zheng Y R. Acta Metall Sin, 1982; 18: 30
[2] (蔡榆林, 郑运荣. 金属学报, 1982; 18: 30)
[3] Ross E W, Sims C T. In: Sims C T, Stoloff N S, Hagel W C eds., Superalloys II, New York: Wiley, 1987: 97
[4] Pollock T M. Mater Sci Eng, 1999; B32: 255
[5] Giamei A F, Anton D L. Metall Trans, 1985; 16A: 1997
[6] Rae C M F, Karunaratne M S A, Small C J, Broomfiels C N, Jones C N, Reed R C. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, Mclean M, Olson S, Schirra J J eds., Superalloys 2000, Warrendale: TMS, 2000: 767
[7] Koul A K, Castillo R. Metall Trans, 1988; 19A: 2049
[8] Qin X Z, Guo J T, Yuan C, Chen C L, Ye H Q. Metall Mater Trans, 2007; 38A: 3014
[9] Qin X Z, Guo J T, Yuan C, Hou J S, Ye H Q. Mater Lett, 2008; 62: 258
[10] Qin X Z, Guo J T, Yuan C, Hou J S, Ye H Q. Mater Lett, 2008; 62: 2275
[11] Qin X Z, Guo J T, Yuan C, Yang G X, Zhou L Z, Ye H Q. J Mater Sci, 2009; 44: 4840
[12] Stevens R A, Flewitt P E J. Mater Sci Eng, 1979; A37: 237
[13] Lifshitz I M, Slyozov V V. J Phys Chem Solids, 1961; 19: 35
[14] Wanger C Z. Elektrochem, 1961; 65: 581
[15] Swalin R A, Martin A. J Met, 1956; 206: 567
[16] Van Der Molten F H, Oblak J M, Kriege O H. Metall Trans, 1971; 2: 1627
[17] Lvov G, Levit V I, Kaufman M J. Metall Mater Trans, 2004; 35A: 1669
[18] Wang J, Zhou L Z, Qin X Z, Sheng L Y, Hou J S, Guo J T. Mater Sci Eng, 2012; A533: 14
[19] Qin X Z, Guo J T, Yuan C, Yang G X, Zhou L Z, Ye H Q. Mater Sci Eng, 2008; A485: 74
[20] Sun W, Qin X Z, Guo Y A, Guo J T, Zhou L Z, Lou L H. Acta Metall Sin, 2014; 50: 744
[20] (孙 文, 秦学智, 郭永安, 郭建亭, 周兰章, 楼琅洪.金属学报, 2014; 50: 744)
[21] Liu L R, Jin T, Zhao N R, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2003; A361:191
[22] Chen Q Z, Knowles D M. Metall Trans, 2002; 33A: 1319
[23] Pessah M, Caron P, Khan T. In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Warrendale: TMS, 1992,567
[24] Pessah-Simonetti M, Caron P, Khan T. Mater Sci Eng, 1998; A254: 1
[1] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[6] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[10] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[11] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[12] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[13] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[14] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[15] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.