Please wait a minute...
金属学报  2015, Vol. 51 Issue (1): 67-76    DOI: 10.11900/0412.1961.2014.00281
  论文 本期目录 | 过刊浏览 |
(W+Mo)/Cr比对铸造镍基高温合金时效组织和持久性能的影响
孙文1, 2, 秦学智2, 郭建亭2, 楼琅洪2, 周兰章2
1 中国科学技术大学, 合肥 230022; 2 中国科学院金属研究所, 沈阳 110016
EFFECTS OF (W+Mo)/Cr RATIO ON MICROSTRUC-TURAL EVOLUTIONS AND MECHANICAL PROPER-TIES OF CAST Ni-BASED SUPERALLOYS DURING LONG-TERM THERMAL EXPOSURE
SUN Wen1, 2, QIN Xuezhi2, GUO Jianting2, LOU Langhong2, ZHOU Lanzhang2
1 University of Science and Technology of China, Hefei 230022; 2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
全文: PDF(18347 KB)   HTML
摘要: 利用真空冶炼制备了不同(W+Mo)/Cr比(质量比)的铸造镍基高温合金, 采用OM, SEM和TEM观察了合金试样的微观组织, 研究了(W+Mo)/Cr比对合金组织演化和持久性能的影响. 结果表明, (W+Mo)/Cr比对热处理态组织无明显影响, 主要组成相为g基体、g' 相、初生MC和晶界二次碳化物. 长期时效期间, 合金试样的组织演化主要包括g' 相粗化、拓扑密排相 (TCP) 相析出、MC分解和晶界粗化. 随(W+Mo)/Cr比降低, MC的热稳定性明显降低, 晶界粗化程度升高, 晶界碳化物发生了M6C→ M6C+M23C6→ M23C6的转变. 同时, TCP相的析出量明显减少. 当(W+Mo)/Cr比为0.22时, 无TCP相析出. 另外, (W+Mo)/Cr比由高于0.55降低至0.37时, TCP相的种类由m相转变为了ms相共存. g' 相和晶界粗化及TCP相的析出是引起合金持久性能降低的主要原因. 综合(W+Mo)/Cr比对合组织演化和持久性能的影响得出, (W+Mo)/Cr比约为0.37时, 合金具有最佳的持久性能.
关键词 镍基高温合金(W+Mo)/Cr比长期时效组织演化力学性能    
Abstract:The Ni-based superalloys are widely used as microstructural components of modern turbine engines due to its good high temperature strength, good fatigue and creep property and excellent hot-corrosion resistance. In order to increase their high temperature strength, more and more refractory elements, such as W and Mo, are added into these alloys while Cr content gradually decreases. During long-term aging, these alloys generally experience various microstructural changes, including coarsening of g' phase coarsening, formation of a continuous grain boundary (GB) carbide network, precipitation topologically close-packed (TCP) phase, and degeneration of MC carbide. However, there is limited available data about the effect of (W+Mo)/Cr ratios on the microstructural evolution of Ni-based superalloys. In this work, the cast Ni-based superalloys with different (W+Mo)/Cr ratios (mass ratios) are fabricated by vacuum induction furnace. After standard heat treated (1110 ℃, 4.5 h, air cooling+750 ℃, 10.5 h, air cooling), they are thermally exposed at 850 ℃ for different times. The stress-rupture tests are operated under the condition of 800 ℃, 294 MPa. Effects of (W+Mo)/Cr ratios on the microstructure evolutions and mechanical properties are investigated by the combination of OM, SEM, TEM and stress-rupture tests. The experiment results show that the (W+Mo)/Cr ratio has no obvious influence on the standard heat treated microstructure, which is mainly composed of g matrix, g' phase, MC carbide and secondary carbides distributing at grain boundaries. During long-term thermal exposure, the microstructure evolutions occur by g' phase coarsening, TCP phases formation, MC degeneration and grain boundary coarsening. The g' phase coarsening behavior is not affected obviously by the (W+Mo)/Cr ratio. However, the amount of TCP phases decreases significantly with decreasing of (W+Mo)/Cr ratio and the type of TCP phases transforms from m phase to coexist of m and s phases when (W+Mo)/Cr ratio decreases from 0.55 to 0.37. There are no TCP phases observed in the sample with (W+Mo)/Cr ratio of 0.22. The thermal stability of MC carbide is reduced obviously and the grain boundaries coarsen more severely by the decrease of (W+Mo)/Cr ratio. The degradation of stress-rupture property is attributed to the coarsening of g' phase and grain boundaries and the formation of TCP phases. Combined with the effect of (W+Mo)/Cr ratio on the solid solution strengthening, microstructure evolution and stress-rupture property, it can be concluded that the optimum stress-rupture property can be obtained when the (W+Mo)/Cr ratio is about 0.37.
Key wordsNi-based superalloy    (W+Mo)/Cr ratio    long-term aging    microstructural evolution    mechanical property
    
ZTFLH:  TA211.8  
基金资助:*国家自然科学基金项目51001101和国家高技术研究发展计划项目2012AA03A501资助
Corresponding author: Correspondent: QIN Xuezhi, associate professor, Tel: (024)83978469, E-mail: xzqin@imr.ac.cn     E-mail: xzqin@imr.ac.cn
作者简介: 孙文, 男, 1986年生, 博士生

引用本文:

孙文, 秦学智, 郭建亭, 楼琅洪, 周兰章. (W+Mo)/Cr比对铸造镍基高温合金时效组织和持久性能的影响[J]. 金属学报, 2015, 51(1): 67-76.
SUN Wen, QIN Xuezhi, GUO Jianting, LOU Langhong, ZHOU Lanzhang. EFFECTS OF (W+Mo)/Cr RATIO ON MICROSTRUC-TURAL EVOLUTIONS AND MECHANICAL PROPER-TIES OF CAST Ni-BASED SUPERALLOYS DURING LONG-TERM THERMAL EXPOSURE. Acta Metall Sin, 2015, 51(1): 67-76.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2014.00281      或      https://www.ams.org.cn/CN/Y2015/V51/I1/67

图1  A1合金的典型热处理态组织
图2  不同合金试样中g' 相在时效不同时间后的SEM像
图3  850 ℃时效0.5×103 h后合金试样的微观组织
图4  850 ℃时效1×104 h后合金的组织形貌
图5  850 ℃时效1×103 h后合金中MC的分解形貌
图6  850 ℃时效1×104 h后合金中MC的分解形貌
图7  初生MC分解程度D随时效时间 t的变化
图8  850 ℃时效1×104 h后合金试样的晶界形貌
图9  (W+Mo)/Cr比对合金持久寿命的影响
图10  850 ℃时效1×104 h后4个合金试样在800 ℃, 294 MPa下持久断裂的纵截面微观组织
表1  镍基高温合金的化学成分
表2  MC的成分及热稳定性参数
[1] Guo J T. Materials Science and Engineering for Superalloys. Vol.1, Beijing: Science Press, 2008: 39 (郭建亭. 高温合金材料学(上册). 北京: 科学出版社, 2008: 39)
[2] Cai Y L, Zheng Y R. Acta Metall Sin, 1982; 18: 30 (蔡榆林, 郑运荣. 金属学报, 1982; 18: 30)
[3] Ross E W, Sims C T. In: Sims C T, Stoloff N S, Hagel W C eds., Superalloys II, New York: Wiley, 1987: 97
[4] Pollock T M. Mater Sci Eng, 1999; B32: 255
[5] Giamei A F, Anton D L. Metall Trans, 1985; 16A: 1997
[6] Rae C M F, Karunaratne M S A, Small C J, Broomfiels C N, Jones C N, Reed R C. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, Mclean M, Olson S, Schirra J J eds., Superalloys 2000, Warrendale: TMS, 2000: 767
[7] Koul A K, Castillo R. Metall Trans, 1988; 19A: 2049
[8] Qin X Z, Guo J T, Yuan C, Chen C L, Ye H Q. Metall Mater Trans, 2007; 38A: 3014
[9] Qin X Z, Guo J T, Yuan C, Hou J S, Ye H Q. Mater Lett, 2008; 62: 258
[10] Qin X Z, Guo J T, Yuan C, Hou J S, Ye H Q. Mater Lett, 2008; 62: 2275
[11] Qin X Z, Guo J T, Yuan C, Yang G X, Zhou L Z, Ye H Q. J Mater Sci, 2009; 44: 4840
[12] Stevens R A, Flewitt P E J. Mater Sci Eng, 1979; A37: 237
[13] Lifshitz I M, Slyozov V V. J Phys Chem Solids, 1961; 19: 35
[14] Wanger C Z. Elektrochem, 1961; 65: 581
[15] Swalin R A, Martin A. J Met, 1956; 206: 567
[16] Van Der Molten F H, Oblak J M, Kriege O H. Metall Trans, 1971; 2: 1627
[17] Lvov G, Levit V I, Kaufman M J. Metall Mater Trans, 2004; 35A: 1669
[18] Wang J, Zhou L Z, Qin X Z, Sheng L Y, Hou J S, Guo J T. Mater Sci Eng, 2012; A533: 14
[19] Qin X Z, Guo J T, Yuan C, Yang G X, Zhou L Z, Ye H Q. Mater Sci Eng, 2008; A485: 74
[20] Sun W, Qin X Z, Guo Y A, Guo J T, Zhou L Z, Lou L H. Acta Metall Sin, 2014; 50: 744 (孙 文, 秦学智, 郭永安, 郭建亭, 周兰章, 楼琅洪.金属学报, 2014; 50: 744)
[21] Liu L R, Jin T, Zhao N R, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2003; A361:191
[22] Chen Q Z, Knowles D M. Metall Trans, 2002; 33A: 1319
[23] Pessah M, Caron P, Khan T. In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Warrendale: TMS, 1992,567
[24] Pessah-Simonetti M, Caron P, Khan T. Mater Sci Eng, 1998; A254: 1
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[3] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[4] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[5] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[6] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[7] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[8] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[9] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[10] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[11] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[12] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[13] 张北江,黄烁,张文云,田强,陈石富. 变形高温合金盘材及其制备技术研究进展[J]. 金属学报, 2019, 55(9): 1095-1114.
[14] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[15] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.