Please wait a minute...
金属学报  2013, Vol. 49 Issue (3): 311-319    DOI: 10.3724/SP.J.1037.2012.00549
  论文 本期目录 | 过刊浏览 |
定向凝固Al-12%Ni过共晶合金组织演化
彭鹏,李新中,刘冬梅,苏彦庆,郭景杰,傅恒志
哈尔滨工业大学材料科学与工程学院, 哈尔滨 150001
MICROSTRUCTURE EVOLUTION OF DIRECTIONALLY SOLIDIFIED Al-12%Ni HYPEREUTECTIC ALLOY
PENG Peng, LI Xinzhong, LIU Dongmei, SU Yanqing, GUO Jingjie, FU Hengzhi
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001
全文: PDF(1251 KB)  
摘要: 

通过Bridgman定向凝固技术对Al-12%Ni(质量分数)过共晶合金在1-100 μm/s的生长速率范围内进行恒速定向凝固以及不同初始生长条件和变速比下的跃迁加速定向凝固实验, 获得耦合共晶组织的条件. 研究发现, 生长速率为1 μm/s时, 经过一定距离生长后, 组织中无单独生长的初生相, 获得耦合共晶组织; 而当生长速率为2-100 μm/s时, 初生Al3Ni相领先生长且呈现典型小平面生长特性. 跃迁加速实验表明, 跃迁加速前的初始组织对最终组织有决定性影响, 只有当跃迁前的组织中无单独生长的初生相时, 跃迁后才可在较高生长速率下获得耦合共晶组织. 同时定向凝固可以有效提高Al-12%Ni合金的强度和塑性, 跃迁加速获得的耦合共晶组织延伸率也得到进一步提高.

 

关键词 共晶合金定向凝固组织演化凝固机制    
Abstract

The Al-12%Ni (mass fraction) hypereutectic alloy from pure Ni and Al (99.9%) was induction melted and directionally solidified at constant growth rates ranging from 1 μm/s to 100 μm/s and abrupt change of growth rate were carried out in a Bridgman-type furnace. After solidification, the samples were quickly quenched into liquid Ga-In-Sn alloy to preserve the microstructure. The microstructures of the samples were observed using OM and SEM. It was indicated that at a growth rate of 1 μm/s, after experiencing a certain growth distance, the primary Al3Ni phase disappeared and the coupled growth of eutectic could be obtained. The morphology of Al3Ni phase was faceted when it was the leading phase at growth rates from 2 μm/s to 100 μm/s. The result of experiments with abrupt change of growth rate indicate that the initial microstructure before abrupt change of growth rate determine the microstructure after abrupt change of growth rate. Only if there existed no coarse primary Al3Ni phase before abrupt change of growth rate could entirely coupled eutectic structure be obtained at relatively higher growth rates. After abrupt change of growth rate, the growth of primary Al3Ni phase was suppressed and the coupled eutectic could grow continuously without any coarse primary phases. The strength and plasticity could be improved effectively through directional solidification.Besides, the elongation of Al-12%Ni alloy could be greatly improved by the abrupt change of growth rate during directional solidification.

Key wordseutectic alloy    directional solidification    microstructure evolution    solidification mechanism
收稿日期: 2012-09-14     
基金资助:

国家自然科学基金项目51071062, 51274077 和51271068, 国家重点基础研究发展计划项目2011CB610406, 中央高校基本科研业务费项目HIT.NSRIF.2013002及华中科技大学模具技术国家重点实验室开放基金项目2011-P03资助

通讯作者: 李新中     E-mail: hitlxz@ 126.com
作者简介: 彭鹏, 男, 1985年生, 博士生

引用本文:

彭鹏,李新中,刘冬梅,苏彦庆,郭景杰,傅恒志. 定向凝固Al-12%Ni过共晶合金组织演化[J]. 金属学报, 2013, 49(3): 311-319.
PENG Peng, LI Xinzhong, LIU Dongmei, SU Yanqing, GUO Jingjie, FU Hengzhi. MICROSTRUCTURE EVOLUTION OF DIRECTIONALLY SOLIDIFIED Al-12%Ni HYPEREUTECTIC ALLOY. Acta Metall Sin, 2013, 49(3): 311-319.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00549      或      https://www.ams.org.cn/CN/Y2013/V49/I3/311

[1] Shankar S, Riddle Y W, Makhlouf M M.Acta Mater, 2004; 52: 4447


[2] Kurz W, Fisher D J.Int Mater Rev, 1979; 5: 177

[3] Kurz W, Fisher D J.Fundamental of Solidification. 6th Ed., Switzerland: Trans Tech Publication, 1998: 180

[4] Qu S Y, Wang R M, Han Y F.Mater Rev, 2002; 16(4): 31

(曲士昱, 王荣明, 韩雅芳. 材料导报, 2002; 16(4): 31)

[5] Gao W, Li Z W, Wu Z, Li S A, He Y D.Intermetallics, 2002; 10: 263

[6] Meng J, Jia C C, He Q.J Alloy Compds, 2006; 421: 200

[7] Ren Z M, Li X, Wang H.Mater Lett, 2004; 58: 3405

[8] Zheng L L, Larson D J, Zhang H.J Cryst Growth, 2000; 209: 110

[9] Li S M, Song Y P, Ma B L, Tang L, Fu H Z.Mater Sci Eng, 2008; A475: 117

[10] Li S M, Quan Q R, Li X L, Fu H Z.J Cryst Growth, 2011; 314: 279

[11] Li S M, Ma B L, Li X L, Liu L, Fu H Z.Sci China E, 2005; 35: 479

(李双明, 马伯乐, 李晓历, 刘林, 傅恒志. 中国科学 E辑, 2005; 35: 479)

[12] Li S M, Jiang B L, Ma B L, Liu L, Fu H Z.J Aero Mater, 2005; 26(3): 35

(李双明, 蒋冰轮, 马伯乐, 刘林, 傅恒志. 航空材料学报, 2005; 26(3): 35)

[13] Tang L, Ai T T, Feng X M, Li S M.Cast Forg Weld, 2009; 38(1): 19

(唐玲, 艾桃桃, 冯小明, 李双明. 金属铸锻焊技术, 2009; 38(1): 19)

[14] Li S M, Song Y P, Ma B L, Tang L, Fu H Z.Mater Sci Eng, 2008; A475: 117

[15] Li S M, Quan Q R, Li X L, Fu H Z.J Cryst Growth, 2011; 314: 279

[16] Liu D M, Li X Z, Su Y Q, Luo L S, Guo J J, Fu H Z.Intermetallics, 2012; 26: 131

[17] Jones H.Mater Sci Eng, 2005; A413-414: 165

[18] Mertinger V, Szabo G, Barczy P, Kovacs A, Czel G.Mater Sci Forum, 1996; 215-216: 331

[19] Juarez-Hernandez A, Jones H.Scr Mater, 1998; 38: 729

[20] Nguyen Thi H, Drevet B, Debierre J M, Camel D, Dabo Y, Billia B.J Cryst Growth, 2003; 253: 539

[21] Burden M H, Hunt J D.J Cryst Growth, 1974; 22: 109

[22] Jackson K A.J Cryst Growth, 1968; 3-4: 507

[23] Liu D M.PhD Dissertation, Harbin Institute of Technology, 2012

(刘冬梅. 哈尔滨工业大学博士论文, 2012)

[24] Tiller W A, Jackson K A, Rutter J W, Chalmers B.Acta Metall, 1953; 1: 428

[25] Smith V G, Tiller W A, Rutter J W.J Phys, 1955; 33: 723

[26] Hu H Q.Fundamentals of Alloy Solidification. Beijing: China Machine Press, 1991: 251

(胡汉起. 金属凝固原理. 北京: 机械工业出版社, 1991: 251)
[1] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[2] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[3] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[4] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[5] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.
[6] 金浩, 贾清, 刘荣华, 线全刚, 崔玉友, 徐东生, 杨锐. 籽晶制备及Ti-47Al合金PST晶体取向控制[J]. 金属学报, 2019, 55(12): 1519-1526.
[7] 张建锋, 蓝青, 乐启炽. 交流磁场致Al-Fe亚共晶合金熔体热电势变化的研究[J]. 金属学报, 2018, 54(7): 1042-1050.
[8] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[9] 苏彦庆, 刘桐, 李新中, 陈瑞润, 郭景杰, 傅恒志. 籽晶法定向凝固TiAl基合金片层取向控制[J]. 金属学报, 2018, 54(5): 647-656.
[10] 李言祥, 刘效邦. 定向凝固多孔金属研究进展[J]. 金属学报, 2018, 54(5): 727-741.
[11] 刘林, 孙德建, 黄太文, 张琰斌, 李亚峰, 张军, 傅恒志. 高梯度定向凝固技术及其在高温合金制备中的应用[J]. 金属学报, 2018, 54(5): 615-626.
[12] 侯渊, 任忠鸣, 王江, 张振强, 李霞. 纵向静磁场对定向凝固GCr15轴承钢柱状晶向等轴晶转变的影响[J]. 金属学报, 2018, 54(5): 801-808.
[13] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.
[14] 陈光, 郑功, 祁志祥, 张锦鹏, 李沛, 成家林, 张中武. 受控凝固及其应用研究进展[J]. 金属学报, 2018, 54(5): 669-681.
[15] 王锦程, 郭春文, 李俊杰, 王志军. 定向凝固晶粒竞争生长的研究进展[J]. 金属学报, 2018, 54(5): 657-668.