Please wait a minute...
金属学报  2012, Vol. 48 Issue (7): 875-881    DOI: 10.3724/SP.J.1037.2012.00006
  论文 本期目录 | 过刊浏览 |
深过冷Ni-21.4%Si共晶合金的凝固特性研究
常芳娥, 赵志伟, 朱满, 李娜, 方雯, 董广志, 坚增运
西安工业大学材料与化工学院, 西安 710032
SOLIDIFICATION BEHAVIORS OF HIGHLY UNDERCOOLED Ni-21.4%Si EUTECTIC ALLOY
CHANG Fang'e, ZHAO Zhiwei, ZHU Man, LI Na, FANG Wen, DONG Guangzhi, JIAN Zengyun
School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032
全文: PDF(5333 KB)  
摘要: 对熔融玻璃净化后深过冷Ni-21.4%Si(原子分数, 下同)共晶合金的凝固特性进行了实验研究, 并对其均质形核过冷度进行了理论预测. 结果发现, 采用熔融玻璃净化可使Ni-21.4%Si共晶合金获得318 K的过冷度. 理论计算表明, 此过冷度达到了Ni-21.4%Si共晶合金的均质形核过冷度. Ni-21.4%Si共晶合金凝固特性与过冷度?T有关: 当过冷度小于250 K时, 冷却曲线有2个再辉峰, 其中当过冷度小于206 K时, 凝固组织由Ni3Si相和规则共晶组成, 当过冷度在206 K到250 K之间时, 凝固组织由α-Ni相和规则共晶组成; 过冷度大于250 K后, 冷却曲线只有 1个再辉峰, 凝固组织为反常共晶. 过冷度会影响初生相Ni3}$Si的生长方式. 随着过冷度的增大, 初生相Ni3Si<的生长会由小平面生长方式转为非小平面生长方式.
关键词 深过冷Ni-21.4%Si合金凝固组织均质形核    
Abstract:The solidification behaviors of highly undercooled Ni-21.4%Si eutectic alloy molten under a slag composed of B2O3 and soda lime glass were investigated and the undercooling for the alloy to nucleate homogenously was predicted theoretically. It is found that a undercooling of 318 K can be achieved in Ni-21.4%Si eutectic alloy by using slag technique. Theoretical calculation shows that the maximum undercooling obtained in Ni-21.4%Si eutectic alloy has reached the homogeneous nucleation undercooling for the alloy. The solidification behavior and structure of undercooled Ni-21.4%Si eutectic alloy depend on the undercooling. When the undercooling is lower than 250 K, there are two recalescence peaks on the cooling curve. The solidified microstructure is composed of primary Ni3Si phase and regular eutectic as the undercooling is lower than 206 K, while primary α-Ni phase and regular eutectic structure are obtained when the undercooling is in the region from 206 K to 250 K. When the undercooling is greater than 250 K, only one recalescence peak is observed in the cooling curve and anomalous eutectic structure is obtained. Undercooling can influence the growth mode of primary Ni3Si. The primary Ni$_{3}$Si transforms from lateral growth to non-lateral growth with increasing the undercooling.
Key wordshigh undercooling    Ni-21.4%Si alloy    solidification    microstructure    homogeneous nucleation
收稿日期: 2012-01-04     
基金资助:

国家重点基础研究发展计划项目2011CB610403、国家自然科学基金项目51071115和51171136资助

通讯作者: 常芳娥     E-mail: jzycfe@pub.xaonline.com
作者简介: 常芳娥, 女, 1962年生, 教授

引用本文:

常芳娥 赵志伟 朱满 李娜 方雯 董广志 坚增运. 深过冷Ni-21.4%Si共晶合金的凝固特性研究[J]. 金属学报, 2012, 48(7): 875-881.
CHANG Fang-E, DIAO Zhi-Wei, ZHU Man, LI Na, FANG Wen, DONG An-Zhi, JIAN Ceng-Yun. SOLIDIFICATION BEHAVIORS OF HIGHLY UNDERCOOLED Ni-21.4%Si EUTECTIC ALLOY. Acta Metall Sin, 2012, 48(7): 875-881.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00006      或      https://www.ams.org.cn/CN/Y2012/V48/I7/875

[1] Turnbull D, Cech R E. J Appl Phys, 1950; 21: 804

[2] Perepezko J H. Mater Sci Eng, 1984; 65: 125

[3] Jian Z Y, Kuribayashi K, Jie W Q. Acta Mater, 2004; 52: 3323

[4] Jian Z Y, Kuribayashi K, Jie W Q. Acta Mater, 2006; 54: 3227

[5] Goetzinger R, Barth M, Herlach D M. J Appl Phys, 1998; 84: 1643

[6] Goetzinger R, Barth M, Herlach D M. Acta Mater, 1998; 46: 1647

[7] Leonhardt M, Lindenkreuz H G, L¨oser W, Eckert J. Mater Sci Forum, 1999; 312: 275

[8] Xi Z Z, Yang G C, Zhou Y H. Prog Nat Sci, 1997; 7: 624

[9] Xi Z Z, Yang G C, L¨u Y L, Zhou Y H. Acta Metall Sin, 1998; 34: 511

(惠增哲, 杨根仓, 吕衣礼, 周尧和. 金属学报, 1998; 34: 511)

[10] Lu Y P, Yang G C, Xi Z Z, Wang H P, Zhou Y H. Mater Lett, 2005; 59: 1558

[11] Lu Y P, Liu F, Yang G C, Wang H P, Zhou Y H. Mater Lett, 2007; 61: 987

[12] Lu Y P. PhD Thesis, Northwestern Polytechnical University, Xi’an, 2008

(卢一平. 西北工业大学博士学位论文, 西安, 2008)

[13] Liu F, Chen Y Z, Yang G C, Lu Y P, Chen Z, Zhou Y H. J Mater Res, 2007; 22: 2953

[14] Zhang Z Z, Song G S, Yang G C, Zhou Y H. Foundry Technol, 1993; 3: 40

(张振忠, 宋广生, 杨根仓, 周尧和. 铸造技术, 1993; 3: 40)

[15] Jian Z Y, Jie W Q. Metall Mater Trans, 2001; 32A: 391

[16] Jian Z Y, Chang F E, Ma W H, Yan W, Yang G C, Zhou Y H. Sci China, 2000; 30E: 9

(坚增运, 常芳娥, 马卫红, 严 文, 杨根仓, 周尧和. 中国科学, 2000; 30E: 9)

[17] Jian Z Y, Kuribayashi K, Jie W Q. Mater Trans JIM, 2002; 43: 721

[18] Miedema A R, De Chatel P F, De Boer F R. Physica, 1980; B100: 1

[19] Chen X Q, Ding X Y, Liu X, Zheng H Y. Acta Metall Sin, 2000; 36: 492

(陈星秋, 丁学勇, 刘新, 郑海燕. 金属学报, 2000; 36: 492)

[20] Acker J, Bohmhammel K. Thermochim Acta, 1999; 337: 187

[21] Cadirli E, Herlach D M, Volkmann T. J Non–Cryst Solids, 2010; 356: 461

[22] Li J F, JieWQ, Zhao S, Zhou Y H. Metall Mater Trans, 2007; 38A: 1806

[23] Li J F, Li X L, Liu L, Lu S Y. J Mater Res, 2008; 23: 2139

[24] Hu H Q. Theory of Metal Solidification. 2nd Ed., Beijing: China Machine Press, 2000: 173

(胡汉起. 金属凝固原理. 第2版, 北京: 机械工业出版社, 2000: 173)

[25] Kurz W, Fisher D J. Acta Metall, 1981, 29: 11

[26] Tewari S N. Metall Trans, 1987; 18A: 525

[27] Evans E D, Hofmeister W H, Bayuzick R J, Robinson M B. Metall Mater Trans, 1986; 17A: 973
[1] 于家英, 王华, 郑伟森, 何燕霖, 吴玉瑞, 李麟. 热浸镀锌高强汽车板界面组织对其拉伸断裂行为的影响[J]. 金属学报, 2020, 56(6): 863-873.
[2] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[3] 刘震鹏, 闫志巧, 陈峰, 王顺成, 龙莹, 吴益雄. 金刚石工具用Cu-10Sn-xNi合金的制备和性能表征[J]. 金属学报, 2020, 56(5): 760-768.
[4] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[5] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[6] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[7] 任忠鸣,雷作胜,李传军,玄伟东,钟云波,李喜. 电磁冶金技术研究新进展[J]. 金属学报, 2020, 56(4): 583-600.
[8] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[9] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[10] 王桂芹,王琴,车宏龙,李亚军,雷明凯. Si对铸造超高铬高碳双相钢组织及性能的影响[J]. 金属学报, 2020, 56(3): 278-290.
[11] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[12] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[13] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[14] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[15] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.