Please wait a minute...
金属学报  2016, Vol. 52 Issue (7): 859-865    DOI: 10.11900/0412.1961.2015.00619
  论文 本期目录 | 过刊浏览 |
定向凝固Al-Y合金组织演化规律及小平面相生长*I. Al-15%Y过共晶合金组织演化规律
骆良顺1(),刘桐1,张延宁2,苏彦庆1,郭景杰1,傅恒志1
1 哈尔滨工业大学金属精密热加工国家级重点实验室, 哈尔滨 150001。
2 沈阳黎明航空发动机(集团)有限责任公司, 沈阳 110043。
MICROSTRUCTURE EVOLUTION AND GROWTH BE-HAVIORS OF FACETED PHASE IN DIRECTIONALLY SOLIDIFIED Al-Y ALLOYS I. Microstructure Evolution of Directionally Solidified Al-15%Y Hypereutectic Alloy
Liangshun LUO1(),Tong LIU1,Yanning ZHANG2,Yanqing SU1,Jingjie GUO1,Hengzhi FU1
1 National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China
2 Shenyang Liming Aero-Engine Group Corporation LTD, Shenyang 110043, China
全文: PDF(1798 KB)   HTML
  
摘要: 

对Al-15%Y (质量分数)过共晶合金在1~100 μm/s的抽拉速率下进行定向凝固实验, 研究抽拉速率对组织演化及Al3Y相生长规律的影响. 结果表明, 铸态Al-15%Y合金主要由Al3Y先析出相和Al3Y/Al共晶体组成. 在定向凝固过程中, 当抽拉速率为1 μm/s时, Al3Y相为不规则形状且边界清晰, 为小平面的生长特性. 随着抽拉速率的增加, Al3Y相的形貌逐渐转变为拉长的六棱柱形态, 其中少量的Al3Y相具有中空形貌. 当抽拉速率为10和20 μm/s时, Al3Y相按粗大的六棱柱形态生长. 进一步增加抽拉速率至100 μm/s时, 组织中出现“十”字形貌的Al3Y相, 为2个六棱柱垂直交叉结构, 类似枝晶的生长形式. 在抽拉速率增加的过程中, 固/液界面前沿逐渐出现领先相, 且凝固速率越大, 领先距离越长.

关键词 Al-Y过共晶合金定向凝固金属间化合物Al3Y组织演化    
Abstract

The intermetallic compound has been widely introduced in alloys as a reinforced phase due to its high strength, high hardness and enhanced heat stability. The size, morphology, distribution and volume fraction of these intermetallic compounds affect the mechanical properties of materials significantly. In this work, the microstructures evolution and growth behoviors of primary intermetallic Al3Y phase have been investigated in directionally solidified Al-15%Y (mass fraction) hypereutectic alloy at a wide range of pulling rates (1~100 μm/s). The as-cast Al-15%Y alloy is composed of primary intermetallic Al3Y phase and Al3Y/Al eutectic structure. At relatively low pulling rates (1~5 μm/s), primary Al3Y phase exhibits irregular and having a branching structure on the top of the specimens. Primary Al3Y phase also precipitates in a faceted growth with sharp edges and corners. As the pulling rate increases, the morphologies of Al3Y phase transit to elongated prism. Al3Y phase distributes dispersively in the eutectic structure at a higher pulling rate, presenting a crossing shape with two prisms crossed vertically. Further increasing the growth rate to 100 μm/s, the cross morphology such as two six prismatic vertical cross structure of primary Al3Y appear, similar to the growth in the form of dendrites. During the increase of pulling rates, the leading-phase at solid-liquid interface appear gradually, and the growth distance of primary phase increases with the pulling rates increase.

Key wordsAl-Y hypereutectic alloy    directional solidification    intermetallic compound Al3Y    microstructure evolution
收稿日期: 2015-12-03     
基金资助:* 国家自然科学基金项目51425402, 51371066和51331005资助

引用本文:

骆良顺,刘桐,张延宁,苏彦庆,郭景杰,傅恒志. 定向凝固Al-Y合金组织演化规律及小平面相生长*I. Al-15%Y过共晶合金组织演化规律[J]. 金属学报, 2016, 52(7): 859-865.
Liangshun LUO, Tong LIU, Yanning ZHANG, Yanqing SU, Jingjie GUO, Hengzhi FU. MICROSTRUCTURE EVOLUTION AND GROWTH BE-HAVIORS OF FACETED PHASE IN DIRECTIONALLY SOLIDIFIED Al-Y ALLOYS I. Microstructure Evolution of Directionally Solidified Al-15%Y Hypereutectic Alloy. Acta Metall Sin, 2016, 52(7): 859-865.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2015.00619      或      https://www.ams.org.cn/CN/Y2016/V52/I7/859

图1  定向凝固装置示意图
图2  Al-15%Y过共晶合金铸态组织的SEM-BSE像
图3  较低抽拉速率下定向凝固Al-15%Y过共晶合金纵截面微观组织的OM像
图4  较高抽拉速率下定向凝固Al-15%Y过共晶合金的纵截面微观组织的OM像
图5  定向凝固Al-15%Y过共晶合金横截面微观组织的OM像
图6  不同抽拉速率下定向凝固Al-15%Y合金固/液界面形貌的OM像
图7  定向凝固Al-15%Y过共晶合金初生相Al3Y纵截面和横截面形貌的SEM像
[1] Kurz W, Fisher D J, translated by Li J G, Hu Q D. Fundamentals of Solidification. Beijing: Higher Education Press, 2010: 28
[1] (Kurz W, Fisher D J 著, 李建国, 胡侨丹译. 凝固原理. 北京: 高等教育出版社, 2010: 28)
[2] Bei H, George E P, Kenik E A, Pharr G M.Acta Mater, 2003; 51: 6241
[3] Mori N, Kuroki T, Ogi K.J Cryst Growth, 2001; 229: 335
[4] Kim K H, Nam N D, Kim J G, Shin K S, Jung H C.Intermetallics, 2011; 19: 1831
[5] Hofmann D C, Suh J Y, Wiest A, Duan G, Lind M L, Demetriou M D, Johnson W L.Nature, 2008; 451: 1085
[6] Kang H J, Wu S P, Li X Z, Guo J J, Wang Y.Mater Sci Eng, 2011; A528: 5585
[7] Gao K, Li S M, Fu H Z.Acta Metall Sin, 2014; 50: 962
[7] (高卡, 李双明, 傅恒志. 金属学报, 2014; 50: 962)
[8] Gao K, Li S M, Xu L, Fu H Z.J Cryst Growth, 2014; 394: 89
[9] Yang L Y, Li S M, Chang X Q, Zhong H, Fu H Z.Acta Mater, 2015; 97: 269
[10] Liu D M, Li X Z, Su Y Q, Luo L S, Guo J J, Fu H Z.Intermeta-llics, 2012; 26: 131
[11] Kang H J, Li X Z, Su Y Q, Liu D M, Guo J J, Fu H Z.Intermeta-llics, 2012; 23: 32
[12] Kang H J, Wang T M, Lu Y P, Jie J C, Li X Z, Su Y Q, Guo J J.J Mater Res, 2014; 29: 2547
[13] Wang R Y, Lu W H, Hogan L M.J Cryst Growth, 1999; 207: 43
[14] Kang H J, Wang T M, Li X Z, Su Y Q, Guo J J, Fu H Z.J Mater Res, 2014; 29: 1257
[15] Liu D M.PhD Dissertation, Harbin Institute of Technology, 2012
[15] (刘冬梅. 哈尔滨工业大学博士学位论文, 2012)
[16] Wang F X, Luo L S, Wang L, Zhang D H, Li X Z, Su Y Q, Guo J J, Fu H Z.Acta Metall Sin, 2016; 52: 361
[16] (王富鑫, 骆良顺, 王亮, 张东徽, 李新中, 苏彦庆, 郭景杰, 傅恒志. 金属学报, 2016; 52: 361)
[17] Zhang C, Wang Q, Gao A, Liu T, Lou C S, He J C.Acta Metall Sin, 2008; 44: 713
[17] (张超, 王强, 高翱, 刘铁, 娄长胜, 赫冀成. 金属学报, 2008; 44: 713)
[18] Li G F, Zhang X M, Zhu H F.J Aero Mater, 2010; 30: 1
[18] (李国锋, 张新明, 朱航飞. 航空材料学报, 2010; 30: 1)
[19] Wang J H, Yi D Q, Lu B, Liu S, Cao Y.J Chin Rare Earth Soc, 2002; 20(2): 150
[19] (王建华, 易丹青, 卢斌, 刘沙, 曹昱. 中国稀土学报, 2002; 20(2): 150)
[20] Liu S H, Du Y, Xu H H, He C Y, Schuster J C.J Alloys Compd, 2006; 414: 60
[21] Tiller W A, Jackson K A, Rutter J W, Chalmers B.Acta Metall, 1953; 1: 428
[22] Fu H Z, Guo J J, Liu L, Li J S.Directional Solidification and Processing of Advanced Materials. Beijing: Science Press, 2008: 225
[22] (傅恒志, 郭景杰, 刘林, 李金山. 先进材料定向凝固. 北京: 科学出版社, 2008: 225)
[23] Liu S H, Du Y, Chen H L.Calphad, 2006; 30: 334
[24] Asta M, Bechermann C, Karma A, Kurz W, Napolitano R, Plapp M, Purdy G, Rappaz M, Trivedi R.Acta Mater, 2009; 57: 941
[25] Kang H J.PhD Dissertation, Harbin Institute of Technology, 2013
[25] (康慧君. 哈尔滨工业大学博士学位论文, 2013)
[26] Cabrera N, Vermilyea D, Doremus R, Roberts B, Turnbull D.Growth and Perfection of Crystals. New York: Wiley, 1958: 393
[27] Hu H Q. Metal Solidification Principle.Beijing: Machine Industry Press, 2010: 93
[27] (胡汉起. 金属凝固原理. 北京: 机械工业出版社, 2010: 93)
[1] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[2] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[3] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[4] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[5] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.
[6] 金浩, 贾清, 刘荣华, 线全刚, 崔玉友, 徐东生, 杨锐. 籽晶制备及Ti-47Al合金PST晶体取向控制[J]. 金属学报, 2019, 55(12): 1519-1526.
[7] 李言祥, 刘效邦. 定向凝固多孔金属研究进展[J]. 金属学报, 2018, 54(5): 727-741.
[8] 刘林, 孙德建, 黄太文, 张琰斌, 李亚峰, 张军, 傅恒志. 高梯度定向凝固技术及其在高温合金制备中的应用[J]. 金属学报, 2018, 54(5): 615-626.
[9] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[10] 苏彦庆, 刘桐, 李新中, 陈瑞润, 郭景杰, 傅恒志. 籽晶法定向凝固TiAl基合金片层取向控制[J]. 金属学报, 2018, 54(5): 647-656.
[11] 侯渊, 任忠鸣, 王江, 张振强, 李霞. 纵向静磁场对定向凝固GCr15轴承钢柱状晶向等轴晶转变的影响[J]. 金属学报, 2018, 54(5): 801-808.
[12] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.
[13] 陈光, 郑功, 祁志祥, 张锦鹏, 李沛, 成家林, 张中武. 受控凝固及其应用研究进展[J]. 金属学报, 2018, 54(5): 669-681.
[14] 王锦程, 郭春文, 李俊杰, 王志军. 定向凝固晶粒竞争生长的研究进展[J]. 金属学报, 2018, 54(5): 657-668.
[15] 马宗义, 商乔, 倪丁瑞, 肖伯律. 镁合金搅拌摩擦焊接的研究现状与展望[J]. 金属学报, 2018, 54(11): 1597-1617.