Please wait a minute...
金属学报  2018, Vol. 54 Issue (12): 1801-1808    DOI: 10.11900/0412.1961.2018.00139
  本期目录 | 过刊浏览 |
粉末床激光重熔条件下Ni-Sn反常共晶微观组织的数值模拟
魏雷1,2, 曹永青3, 杨海欧1,2(), 林鑫1,2, 王猛1,2, 黄卫东1,2
1 西北工业大学凝固技术国家重点实验室 西安 710072
2 西北工业大学金属高性能增材制造与创新设计工业和信息化部重点实验室 西安 710072
3 洛阳理工学院材料科学与工程学院 洛阳 471000
Numerical Simulation of Anomalous Eutectic Growth of Ni-Sn Alloy Under Laser Remelting of Powder Bed
Lei WEI1,2, Yongqing CAO3, Haiou YANG1,2(), Xin LIN1,2, Meng WANG1,2, Weidong HUANG1,2
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
2 Key Laboratory of Metal High Performance Additive Manufacturing and Innovative Design, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710072, China
3 School of Materials Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471000, China
全文: PDF(3436 KB)   HTML
摘要: 

采用低网格各向异性元胞自动机(cellular automaton,CA)模型研究了激光重熔条件下的反常共晶生长机制。为了验证模型的可靠性,建立了二维层片规则共晶CA 模型,针对CBr4-C2Cl6共晶合金,模拟了1λO失稳形态向2λO失稳形态转变过程,计算结果与实验、相场模拟结果吻合。模型通过设定含三相(αβ和液相)的界面元胞,使CA模型中αβ相体积分数能够连续变化,从而更易于捕捉二维层片共晶的失稳过程。与相场模拟结果相比,本工作计算得到1λO-2λO失稳形态,即1λO和2λO失稳的中间状态,并与实验结果吻合。在上述二元共晶CA模型基础上,对Ni-Sn合金粉末床激光重熔条件下,熔池底部出现的从规则层片状向非规则反常共晶组织的转变过程进行模拟研究,发现在初始低冷却速率条件下,细小的层片共晶发生失稳,即β-Ni3Sn相超越α-Ni相,形成β-Ni3Sn单相定向生长,在后续加速冷却过程中,固/液界面前沿液相中α-Ni相形核,并发生β-Ni3Sn相包裹α-Ni相生长形成反常共晶组织。激光重熔过程中,由熔池底部到顶部的凝固过程中确实存在一个由凝固速率为零到接近扫描速率的快速变化过程,因此与CA模拟采用的变抽拉速率的凝固条件吻合。

关键词 反常共晶数值模拟元胞自动机    
Abstract

Eutectic is one of the most commonly observed solidification patterns, the growth morphology of which is important to materials properties. Anomalous eutectic is typically coarser and globular than lamellar eutectic, which is commonly observed during solidification of binary eutectic alloy, including deep undercooled melt and laser remelting process. The morphological evolution mechanism of anomalous growth is still unknown due to the lack of simulation evidence. During laser remelting process, the anomalous eutectic is sandwiched between lamellar eutectic at the bottom of melt pool. Comparing to deep undercooled melt, laser remelting has simpler temperature field distribution, which can be simplified into directional solidification. Thus, simulations of anomalous eutectic growth in laser remelting process are feasible. In the present work, the anomalous eutectic growth mechanism under laser remelting conditions was simulated using a low mesh induced anisotropy cellular automaton (CA) model. Firstly, a two-dimensional lamellar eutectic CA model of CBr4-C2Cl6 alloy was established, and the morphological transition from 1λO to 2λO was simulated. The calculated results are in good agreement with experiments and phase field simulations. By setting the interface cells containing three phases (α, β and liquid phases), the model can continuously change the α and β phase volume fractions in the CA model, making it easier for the model to capture the instability of lamellar eutectic. Compared with the results of the phase field model, the intermediate 1λO-2λO state of oscillation instability of 1λO and 2λO which is consistent with the experimental results was calculated. Based on the above-mentioned binary eutectic CA model, the lamellar eutectic to anomalous eutectic transition at the bottom of the molten pool was simulated. Under the condition of initial low cooling rate, the fine lamellar eutectic is decoupled, it leads to the overgrowth of β-Ni3Sn phase. During the subsequent accelerated cooling process, α-Ni nucleated in the liquid phase at the front of the solid/liquid interface, and the β-Ni3Sn phase wrapped around the α-Ni phase forming anomalous eutectic morphology. During the laser remelting process, there is indeed a rapid change of solidification rate from zero to scanning speed rate from the bottom to the top of the melt pool, and therefore coincides with the solidification conditions of the variable pulling velocity used in the CA simulations.

Key wordsanomalous eutectic    numerical simulation    cellular automaton
收稿日期: 2018-04-11     
ZTFLH:  TG24  
基金资助:国家重点研发计划项目No.2016YFB1100100,国家自然科学基金项目Nos.51604227、51323008、51475380和51271213,国家重点基础研究发展计划项目No.2011CB610402,国家高技术研究发展计划项目No.2013AA031103及西北工业大学凝固技术国家重点实验室自主研究课题项目No.128-QP-2015
作者简介:

作者简介 魏 雷,男,1981年生,博士

引用本文:

魏雷, 曹永青, 杨海欧, 林鑫, 王猛, 黄卫东. 粉末床激光重熔条件下Ni-Sn反常共晶微观组织的数值模拟[J]. 金属学报, 2018, 54(12): 1801-1808.
Lei WEI, Yongqing CAO, Haiou YANG, Xin LIN, Meng WANG, Weidong HUANG. Numerical Simulation of Anomalous Eutectic Growth of Ni-Sn Alloy Under Laser Remelting of Powder Bed. Acta Metall Sin, 2018, 54(12): 1801-1808.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2018.00139      或      https://www.ams.org.cn/CN/Y2018/V54/I12/1801

Parameter CBr4-C2Cl6[17] Ni-Ni3Sn[28]
Eutectic temperature (TE) 357.6 K 1403 K
Eutectic concentration (CE) 11.8% (mole fraction) 18.7% (atomic fraction)
α liquidus slope at TE (mα) -0.81 K%-1 (mole fraction) -21 K%-1 (atomic fraction)
β liquidus slope at TE (mβ) 1.65 K%-1 (mole fraction) 37 K%-1 (atomic fraction)
α partition coefficient (kα) 0.75 0.57
β partition coefficient (kβ) 1.6 1.21
Diffusion coefficient of solute (Dl) 5.0×10-10 m2s-1 5.0×10-9 m2s-1
α Gibbs-Thomson coefficient (Γα) 8.0×10-8 mK 2.98×10-7 mK
β Gibbs-Thomson coefficient (Γβ) 11.4×10-8 mK 2.1×10-7 mK
表1  CBr4-C2Cl6和Ni-Ni3Sn共晶合金的热物性参数[17,28]
图1  CA模拟CBr4-C2Cl6二维层片共晶形貌从1λO到1λO-2λO到2λO的形态转变(无量纲层片间距Λ=2.6,温度梯度G=8000 K/m,抽拉速率V=2 μm/s)
图2  CA法模拟的抽拉速率在0.007 s时间内从2 μm/s过渡到800 μm/s 时Ni-32.5%Sn共晶合金中规则细层片共晶-反常共晶-粗层片共晶组织转变
图3  抽拉速率始终保持V=2000 μm/s 时CA法模拟Ni-32.5%Sn共晶合金中外延生长的层片共晶组织
图4  激光熔凝条件下熔池底部的反常共晶组织形貌
[1] Kurz W, Fisher D J.Fundamentals of Solidification[M]. Aedermannsdorf, Switzerland: Trans Tech Publications, 1986: 1
[2] Akamatsu S, Plapp M.Eutectic and peritectic solidification patterns[J]. Curr. Opin. Solid State Mater. Sci., 2016, 20: 46
[3] Hunt J D, Jackson K A.Binary eutectic solidification[J]. Trans. Metall. Soc. AIME, 1966, 236: 843
[4] Karma A.Beyond steady-state lamellar eutectic growth[J]. Phys. Rev. Lett., 1987, 59: 71
[5] Karma A, Sarkissian A.Morphological instabilities of lamellar eutectics[J]. Metall. Mater. Trans., 1996, 27A: 635
[6] Ginibre M, Akamatsu S, Faivre G.Experimental determination of the stability diagram of a lamellar eutectic growth front[J]. Phys. Rev., 1997, 56E: 780
[7] Akamatsu S, Faivre G.Traveling waves, two-phase fingers, and eutectic colonies in thin-sample directional solidification of a ternary eutectic alloy[J]. Phys. Rev., 2000, 61E: 3757
[8] Akamatsu S, Perrut M, Bottin-Rousseau S, et al.Spiral two-phase dendrites[J]. Phys. Rev. Lett., 2010, 104: 056101
[9] Hecht U, Gránásy L, Pusztai T, et al.Multiphase solidification in multicomponent alloys[J]. Mater. Sci. Eng., 2004, R46: 1
[10] Powell G L F, Hogan L M. Undercooling in silver-copper eutectic alloys[J]. J. Inst. Met., 1965, 93: 505
[11] Kattamis T Z, Flemings M C.Structure of undercooled Ni-Sn eutectic[J]. Metall. Mater. Trans., 1970, 1B: 1449
[12] Li M J, Nagashio K, Ishikawa T, et al.Microtexture and macrotexture formation in the containerless solidification of undercooled Ni-18.7 at.% Sn eutectic melts[J]. Acta Mater., 2005, 53: 731
[13] Li J F, Li X L, Liu L, et al.Mechanism of anomalous eutectic formation in the solidification of undercooled Ni-Sn eutectic alloy[J]. J. Mater. Res., 2008, 23: 2139
[14] Wei X X, Lin X, Xu W, et al.Remelting-induced anomalous eutectic formation during solidification of deeply undercooled eutectic alloy melts[J]. Acta Mater., 2015, 95: 44
[15] Lin X, Cao Y Q, Wang Z T, et al.Regular eutectic and anomalous eutectic growth behavior in laser remelting of Ni-30wt% Sn alloys[J]. Acta Mater., 2017, 126: 210
[16] Cao Y Q, Lin X, Wang Z T, et al.Microstructural evolution of laser surface remelting remolten Ni-28 wt%Sn alloy under liquid nitrogen cooling[J]. Acta Phys. Sin., 2015, 64: 108103(曹永青, 林鑫, 汪志太等. 液氮冷却条件下激光快速熔凝Ni-28wt%Sn合金组织演变[J]. 物理学报, 2015, 64: 108103)
[17] Kim S G, Kim W T, Suzuki T, et al.Phase-field modeling of eutectic solidification[J]. J. Cryst. Growth, 2004, 261: 135
[18] Yang Y J, Wang J C, Yang G C, et al.Multi-phase field simulation of eutectic morphology selection and interface destabilization[J]. Acta Metall. Sin., 2006, 42: 914(杨玉娟, 王锦程, 杨根仓等. 共晶形貌选择及界面失稳的多相场模拟[J]. 金属学报, 2006, 42: 914)
[19] Zhu M F, Hong C P.Modeling of microstructure evolution in regular eutectic growth[J]. Phys. Rev., 2002, 66B: 155428
[20] Shi Y F, Xu Q Y, Liu B C.Simulation of eutectic growth in directional solidification by cellular automaton method[J]. Acta Metall. Sin., 2012, 48: 41(石玉峰, 许庆彦, 柳百成. 定向凝固共晶生长的元胞自动机数值模拟[J]. 金属学报, 2012, 48: 41)
[21] Shan B W, Huang W D, Lin X, et al.Dendrite primary spacing selection simulation by the cellular automaton model[J]. Acta Metall. Sin., 2008, 44: 1042(单博炜, 黄卫东, 林鑫等. 元胞自动机模型模拟枝晶一次间距的选择[J]. 金属学报, 2008, 44: 1042)
[22] Wei L, Lin X, Wang M, et al.A cellular automaton model for the solidification of a pure substance[J]. Appl. Phy., 2011, 103A: 123
[23] Wei L, Lin X, Wang M, et al.Cellular automaton model with MeshTV interface reconstruction technique for alloy dendrite growth[J]. Acta Phys. Sin., 2012, 61: 098104(魏雷, 林鑫, 王猛等. 基于MeshTV界面重构算法的二元合金自由枝晶生长元胞自动机模型[J]. 物理学报, 2012, 61: 098104)
[24] Wei L, Lin X, Wang M, et al.Orientation selection of equiaxed dendritic growth by three-dimensional cellular automaton model[J]. Physica, 2012, 407B: 2471
[25] Wei L, Lin X, Wang M, et al.A cellular automaton model for a pure substance solidification with interface reconstruction method[J]. Comput. Mater. Sci., 2012, 54: 66
[26] Wei L, Lin X, Wang M, et al.Effects of physical parameters on the cell-to-dendrite transition in directional solidification[J]. Chin. Phys., 2015, 24B: 078108
[27] Wei L, Lin X, Wang M, et al.Low artificial anisotropy cellular automaton model and its applications to the cell-to-dendrite transition in directional solidification[J]. Mater. Discovery, 2016, 3: 17
[28] Wu Y, Piccone T J, Shiohara Y, et al.Dendritic growth of undercooled Nickel-Tin: Part II[J]. Metall. Mater. Trans., 1987, 18A: 925
[29] Zhao S.Solidification of undercooled Ag-28.1Cu-xSb Eutectic alloys [D]. Shanghai: Shanghai Jiao Tong University, 2009(赵素. Ag-28.1Cu-xSb共晶合金的过冷凝固 [D]. 上海: 上海交通大学, 2009)
[1] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[2] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[3] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[4] 戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.
[5] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[6] 逯世杰, 王虎, 戴培元, 邓德安. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592.
[7] 张清东, 林潇, 刘吉阳, 胡树山. Q&P钢热处理过程有限元法数值模拟模型研究[J]. 金属学报, 2019, 55(12): 1569-1580.
[8] 朱鸣芳, 邢丽科, 方辉, 张庆宇, 汤倩玉, 潘诗琰. 合金凝固枝晶粗化的研究进展[J]. 金属学报, 2018, 54(5): 789-800.
[9] 李军, 夏明许, 胡侨丹, 李建国. 大型铸锭均质化问题及其新解[J]. 金属学报, 2018, 54(5): 773-788.
[10] 刘政, 陈志平, 陈涛. 坩埚尺寸和电磁频率对半固态A356铝合金浆料流动的影响[J]. 金属学报, 2018, 54(3): 435-442.
[11] 刘新华, 付华栋, 何兴群, 付新彤, 江燕青, 谢建新. Cu-Al复合材料连铸直接成形数值模拟研究[J]. 金属学报, 2018, 54(3): 470-484.
[12] 沈厚发, 陈康欣, 柳百成. 钢锭铸造过程宏观偏析数值模拟[J]. 金属学报, 2018, 54(2): 151-160.
[13] 朱苗勇, 娄文涛, 王卫领. 炼钢与连铸过程数值模拟研究进展[J]. 金属学报, 2018, 54(2): 131-150.
[14] 廖敦明, 曹流, 孙飞, 陈涛. 铸造宏观过程数值模拟技术的研究现状与展望[J]. 金属学报, 2018, 54(2): 161-173.
[15] 王同敏, 魏晶晶, 王旭东, 姚曼. 合金凝固组织微观模拟研究进展与应用[J]. 金属学报, 2018, 54(2): 193-203.