Please wait a minute...
金属学报  2012, Vol. 48 Issue (2): 176-182    DOI: 10.3724/SP.J.1037.2011.00476
  论文 本期目录 | 过刊浏览 |
快速加热连续退火对超高强TRIP钢显微组织与力学性能的影响
许云波1,侯晓英1,王业勤2,吴迪1
1. 东北大学轧制技术及连轧自动化国家重点实验室, 沈阳 110819
2. 莱芜钢铁集团有限公司, 莱芜 271104
EFFECTS OF RAPID HEATING CONTINUOUS ANNEALING ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ULTRA HIGH–STRENGTH TRIP–AIDED STEEL
XU Yunbo 1, HOU Xiaoying 1, WANG Yeqin 2, WU Di 1
1. State Key Laboratory of Rolling Technology and Automation, Northeast University, Shenyang 110819
2. Laiwu Iron and Steel Group Co. Ltd., Laiwu 271104
引用本文:

许云波 侯晓英 王业勤 吴迪. 快速加热连续退火对超高强TRIP钢显微组织与力学性能的影响[J]. 金属学报, 2012, 48(2): 176-182.
, , , . EFFECTS OF RAPID HEATING CONTINUOUS ANNEALING ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ULTRA HIGH–STRENGTH TRIP–AIDED STEEL[J]. Acta Metall Sin, 2012, 48(2): 176-182.

全文: PDF(1704 KB)  
摘要: 研究了快速加热连续退火工艺对V微合金化低Si含P系TRIP钢显微组织特征与力学性能的影响. 结果表明, 快速连续退火过程中, 随着退火温度的升高, 拉伸强度增加明显, 然而为了保证其综合性能, 并不能一味地提高其临界退火温度.加热速率80℃/s, 退火温度为880℃时, 残余奥氏体形态不仅仅局限于细小的块状结构, 而且在贝氏体铁素体板条间能观察到大量的薄膜状残余奥氏体. 细小、弥散的V(C, N))分布于铁素体或贝氏体基体中, 大部分析出粒子直径在4-9 nm之间, 实验钢具有优异的强度与塑性配合: Rm=1010 MPa, RP0.2=690 MPa, δ=23.6%, n=0.27, r=1.17, 强塑积达到23836 MPa?%. 退火温度过高或过低, 都会减少残余奥氏体的体积分数、改变其形貌并增大其尺寸, 导致综合力学性能下降.
关键词 含V TRIP钢 快速加热 连续退火 力学性能 残余奥氏体    
Abstract:The effects of rapid heating continuous annealing on microstructure and mechanical properties of ultra–high strength and low silicon TRIP steel containing phosphorus and vanadium were investigated. The results show that the yield and tensile strengths are increased with increasing intercritical annealing temperature during rapid continuous annealing. However, the intercritical annealing temperature can not increase blindly to ensure its excellent combined mechanical properties. When the heating rate is 80 ℃/s and intercritical annealing temperature is 880 ℃, the retained austenite not only contains fine blocky structure, but also a large amount of interlath retained austenite films. A great amount of V(C, N) precipitates exists within ferritic matrix, and the sizes of most of the precipates are in the range from 4 to 9 nm. The tested steel has excellent mechanical properties: Rm=1010MPa, RP0.2=690MPa, δ=23.6%, n=0.27, r=1.17, the product of strength and ductility (Rm×δ) is 23836 MPa·%. If the intercritical annealing temperature is too high or too low, the comprehensive  mechanical properties will be deteriorated since the volume fraction of retained austenite reduces,  morphology changes and its size increase.
Key wordsTRIP steel containing vanadium    rapid heating    continuous annealing    mechanical property    retained austenite
收稿日期: 2011-07-22     
基金资助:

国家自然科学基金项目51174059,国家重点基础研究发展计划项目2011CB606306和中央高校基本科研业务费专项项目N110407003资助

作者简介: 许云波, 男, 1976年生, 教授, 博士
[1] Balk S C, Kim S, Jin Y S, Kwon O. ISIJ Int, 2001; 41: 290

[2] Thomson R C, Miller M K. Acta Mater, 1998; 46: 2203

[3] Kim S J, Lee C G, Lee T H, Oh C S. ISIJ Int, 2002; 42: 1452

[4] Pereloma E V, Russell K F, Miller M K, Timokhina I B. Scr Mater, 2008; 58: 1078

[5] Pereloma E V, Timokhina I B, Hodgson P D. Mater Sci Eng, 1999; A273–275: 448

[6] Jiao S, Hassani F, Donaberger R L, Essadiqi E, Yue S. ISIJ Int, 2002; 42: 299

[7] De Meyer M, Vanderschueren D, De Cooman B C. ISIJ Int, 1999; 39: 813

[8] Chen Y, Wang L H, Dong L G, Li F P, Zhang Y. J Iron Steel Res Int, 2007; 14(suppl 1): 368

[9] Jacques P J, Girault E, Mertens A, Verlinden B, van Humbeeck J, Delannay F. ISIJ Int, 2001; 41: 1068

[10] Mahieu J, Maki J, De Cooman B C, Claessens S. Metall Trans, 2002; 33A: 2573

[11] Maki J, Mahieu J, De Cooman B C, Claessens S. Curr Opin Solid State Mater Sci, 2004; 8: 285

[12] Sakuma Y, Matsumura O, Akisue O. ISIJ Int, 1991; 31: 1348

[13] Basuki A, Aernoudt E. Scr Mater, 1999; 40: 1003

[14] Jimenez–Melero E, van Dijk N H, Zhao L, Sietsma J, Offerman S E, Wright J P, van der Zwaag S. Acta Mater, 2009; 57: 533

[15] Chen H C, Era H, Shimizu M. Metall Trans, 1989; 20A: 437

[16] Lesch C, Alvarez P, BleckW, Gil Sevillano J. Metall Mater Trans, 2007; 38A: 1882

[17] Salvatori I, Moore W B R. ISIJ Int, 2000; 40(suppl 1): 179

[18] Reis A C C, Bracke L, Petrov R, Kaluba W J, Kestens L. ISIJ Int, 2003; 43: 1260

[19] Funakawa Y, Shiozaki T, Tomita K, Yamamoto T, Maeda E. ISIJ Int, 2004; 44: 1945
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.