Please wait a minute...
金属学报  2012, Vol. 48 Issue (1): 115-121    DOI: 10.3724/SP.J.1037.2011.00474
  论文 本期目录 | 过刊浏览 |
热轧螺纹钢化学剂冷却过程温度场的数值模拟及实验研究
魏洁, 董俊华, 柯伟
中国科学科院金属研究所腐蚀与防护国家重点实验室, 沈阳 110016
NUMERICAL SIMULATION AND EXPERIMENTAL STUDY ON TEMPERATURE FIELD DURING CHEMICAL REAGENT COOLING PROCESS OF HOT ROLLED REBAR
WEI Jie, DONG Junhua, KE Wei
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

魏洁 董俊华 柯伟. 热轧螺纹钢化学剂冷却过程温度场的数值模拟及实验研究[J]. 金属学报, 2012, 48(1): 115-121.
, , . NUMERICAL SIMULATION AND EXPERIMENTAL STUDY ON TEMPERATURE FIELD DURING CHEMICAL REAGENT COOLING PROCESS OF HOT ROLLED REBAR[J]. Acta Metall Sin, 2012, 48(1): 115-121.

全文: PDF(3545 KB)  
摘要: 本文对化学剂冷却热轧螺纹钢在两段式冷却(前段化学剂FM冷却+后段水冷)过程中的温度场进行了有限元模拟, 并在实验室对前段化学剂FM冷却生成的氧化皮的耐蚀性能进行了评价. 采用工业现场一段式水冷的工艺参数, 模拟了一段式水冷的温度场. 对比一段式水冷的温度场, 分析了两段式冷却的工艺参数对冷却过程温度场的影响. 结果表明, 在前段化学剂FM冷却时, 采用较小的对流换热系数, 有利于提高前段化学剂冷却时的氧化温度, 从而改善氧化皮的质量; 在后段水冷时, 在保持原一段水冷的对流换热系数的情况下, 两段式冷却水冷段的冷却曲线与一段式水冷非常接近, 能够满足III级热轧螺纹钢的力学性能的要求. 采用有限元模拟优化的工艺参数, 在实验室模拟了前段化学剂FM冷却过程, 获得了致密的氧化皮, 其耐蚀性能显著优于水冷钢筋, 说明采用前段化学剂冷却来改善水冷钢筋的耐蚀性能是可行的.
关键词 螺纹钢\化学剂冷却温度场有限元耐蚀性高强度    
Abstract:The corrosion resistance of water cooled rebar is improved by applying a chemical reagent cooling process on the basis of maintaining the high mechanical property. To provide the reference basis for the on-site application of chemical reagent cooling process, the temperature field of the two-stage cooling process (first stage of chemical reagent of FM cooling and second stage of water cooling) of rebar produced by chemical cooling is simulated using the finite element method. Furthermore, the corrosion resistance of scale formed during the first stage of chemical reagent cooling was evaluated in laboratory. Applying the processing parameters of water cooling in steel mill, the temperature field of one-stage cooling was simulated. Compared with the temperature field of the one-stage cooling, the influence of processing parameters on the temperature field during two-stage cooling is analyzed. The results showed that the smaller heat transfer coefficient is applied to increase the oxidation temperature and improve the quality of the oxide scale in the first stage of FM cooling. In the second stage of water cooling, the cooling curve is very approximate to that of one-stage cooling when the heat transfer coefficient of one-stage cooling is remained. Therefore, the mechanical property of hot-rolled rebar of grade III can be ensured. Furthermore, the first stage of FM cooling process was implemented in lab using the optimizing parameters obtained from finite element analysis. The oxide scale forming using FM cooling is compact. And its corrosion resistance is much better than water-cooled rebar, which proves that it is feasible to improve the corrosion resistance of water-cooled rebar using FM cooling before water cooling.
Key wordsrebar    chemical reagent cooling    temperature field    finite element    corrosion resistance    high strength
收稿日期: 2011-07-22     
作者简介: 魏洁, 女, 1980年生, 助理研究员, 博士
[1] Pradhan B, Bhattacharjee B. Constr Build Mater, 2011; 25: 2565

[2] Shi X M, Ning X, Keith F, Jing G. Constr Build Mater, 2012; 30: 125

[3] Zhao M Q, Zhang R Q, Yang Z, Li G J. Anhui Metall, 2003; 4: 23

(赵明琦, 张若蔷, 杨峥, 李光俊. 安徽冶金, 2003; 4: 23)

[4] Huang W, Zhang L,Wang P, Shu W. Archit Technol, 2010; 41: 242

(黄伟, 张丽, 王平, 疏伟. 建筑技术, 2010; 41: 242)

[5] Nikolaou J, George D P. Int J Impact Eng, 2005; 31: 1065

[6] Li G F, Dong H, Gao W, Zhao Y J. J Iron Steel Res, 1996; 8: 42

(李桂芬, 董瀚, 高伟, 赵玉君. 钢铁研究学报, 1996; 8: 42)

[7] Sun X W, Huo X D, Liu D L, Kang Y L, Mao X P, Chen G J, Li L Y. J Univ Sci Technol Beijing, 2004; 26: 268

(孙贤文, 霍向东, 柳得橹, 康永林, 毛新平, 陈贵江, 李烈军. 北京科技大学学报, 2004; 26: 268)

[8] Zakya A I, El–Morsyb A, El–Bitar T. J Mater Process Technol, 2009; 209: 1565

[9] Wei J, Dong J H, Han E H, Ke W. Corros Sci Prot Technol, 2009; 21: 468

(魏洁, 董俊华, 韩恩厚, 柯伟. 腐蚀科学与防护技术, 2009; 21: 468)

[10] Zitrou E, Nikolaou J, Tsakiridis P E, Papadimitriou G D. Constr Build Mater, 2007; 21: 1161

[11] Castro P, W´eleva L, Balanc´an M. Constr Build Mater, 1997; 11: 75

[12] Novak P, Mala R, Joska L. Cem Concr Res, 2001; 31: 589

[13] Zou Y, Wang J, Zheng Y Y. Corros Sci, 2011; 53: 208

[14] Wei J, Dong J H, Ke W. Constr Build Mater, 2010; 24: 275

[15] Wei J, Dong J H, Ke W. Constr Build Mater, 2011; 25: 1243

[16] Chen R Y, Yuen W Y D. Oxid Met, 2001; 56: 89

[17] Almusallam A A. Constr Build Mater, 2001; 15: 361

[18] P´erez F J, Mart´?nez L, Hierro M P, G´omez C, Portela A L, Pucci G N, Duday D, Lecomte–Beckers J, Greday Y. Corro Sci, 2006; 48: 472

[19] Saurabh K, Ananya M, Sudin C, Sanjay C. ISIJ Int, 2004; 44: 1217

[20] Cheng M, Hong H P, Peng D, Kang Y L, Jin Y C. J Iron Steel Res, 2008; 20: 18

(程满, 洪慧平, 彭聃, 康永林, 金永春. 钢铁研究学报, 2008; 20: 18)

[21] Lee Y Y, Choi S, Hodgson P D. Mater Process Technol, 2002; 125: 678

[22] Morales R D, Lopez A G, Olivare M. ISIJ Int, 1990; 30: 48

[23] Yao S C, Cox T L. Exp Heat Transfer, 2002; 15: 207

[24] Zhang G B, Sheng Y, Wei M J, Wu X Z, Wang Y S, Liu Q L. J Heibei Inst Technol, 2002; 24: 32

(张国滨, 盛艳, 魏明军, 武学泽, 王彦生, 刘庆禄. 河北理工学院学报, 2002; 24: 32)

[25] Freund S, Pautsch A G, Shedd T A, Kabelac S. Int J Heat Mass Transfer, 2007; 50: 1953
[1] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[2] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[3] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] 王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.
[5] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.
[6] 赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华. 装甲防护陶瓷-金属叠层复合材料界面研究进展[J]. 金属学报, 2021, 57(9): 1107-1125.
[7] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[8] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.
[9] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[10] 王慧远, 夏楠, 布如宇, 王珵, 查敏, 杨治政. 低合金化高性能变形镁合金研究现状及展望[J]. 金属学报, 2021, 57(11): 1429-1437.
[11] 王雪梅, 殷正正, 于晓彤, 邹玉红, 曾荣昌. AZ31镁合金表面苯丙氨酸、甲硫氨酸和天冬酰胺诱导Ca-P涂层耐蚀性能比较[J]. 金属学报, 2021, 57(10): 1258-1271.
[12] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[13] 王霞, 王维, 杨光, 王超, 任宇航. 激光沉积薄壁结构热力演化的尺寸效应[J]. 金属学报, 2020, 56(5): 745-752.
[14] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[15] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.