Please wait a minute...
金属学报  2021, Vol. 57 Issue (10): 1258-1271    DOI: 10.11900/0412.1961.2021.00058
  研究论文 本期目录 | 过刊浏览 |
AZ31镁合金表面苯丙氨酸、甲硫氨酸和天冬酰胺诱导Ca-P涂层耐蚀性能比较
王雪梅1, 殷正正1, 于晓彤1, 邹玉红2, 曾荣昌1,3,4()
1.山东科技大学 材料科学与工程学院 青岛 266590
2.山东科技大学 化学与生物工程学院 青岛 266590
3.郑州大学 材料科学与工程学院 郑州 450002
4.武汉理工大学 现代汽车零部件技术湖北省重点实验室 武汉 430070
Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys
WANG Xuemei1, YIN Zhengzheng1, YU Xiaotong1, ZOU Yuhong2, ZENG Rongchang1,3,4()
1.School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
2.School of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
3.School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China
4.Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
引用本文:

王雪梅, 殷正正, 于晓彤, 邹玉红, 曾荣昌. AZ31镁合金表面苯丙氨酸、甲硫氨酸和天冬酰胺诱导Ca-P涂层耐蚀性能比较[J]. 金属学报, 2021, 57(10): 1258-1271.
Xuemei WANG, Zhengzheng YIN, Xiaotong YU, Yuhong ZOU, Rongchang ZENG. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. Acta Metall Sin, 2021, 57(10): 1258-1271.

全文: PDF(5915 KB)   HTML
摘要: 

为澄清氨基酸基团对成膜的影响,采用苯丙氨酸(Phenylalanine,Phe)、甲硫氨酸(Methionine,Met)和天冬酰胺(Asparagine,Asn) 3种氨基酸调控AZ31镁合金的降解速率,采用恒温水浴法(60℃)在其表面制备了3种氨基酸Ca-P涂层(Ca-PPhe、Ca-PMet和Ca-PAsn),并使用SEM、EDS 、XRD、FTIR及 XPS对涂层的形貌、成分分布和物相结构进行分析,利用电化学极化和交流阻抗及析氢腐蚀实验对涂层在模拟人体体液(Hank's)中的耐蚀性能进行研究。探讨了氨基酸添加剂在AZ31镁合金表面诱导Ca-P涂层成膜的作用机制。Ca-P、Ca-PPhe、Ca-PMet和Ca-PAsn涂层的厚度分别为(3.47 ± 0.47)、(6.06 ± 0.77)、(7.63 ± 1.70)和(8.23 ± 1.37) μm。涂层主要组成物相为CaHPO4及Ca10(PO4)6(OH)2 (HA)。电化学和析氢实验结果表明,氨基酸提高了Ca-P涂层耐蚀性能。这主要归因于氨基酸分子的缓蚀作用,并在AZ31镁合金表面发生化学吸附。氨基酸中的氨基吸附主要是通过N原子的孤对电子与镁合金表面耦合来实现的;羧基是通过羰基中的O原子与Mg2+结合。此外,氨基酸中的杂原子亦能与镁合金的空位分子轨道共享其孤对电子。最后,提出了氨基酸诱导Ca-P涂层的成膜机理。

关键词 AZ31镁合金涂层氨基酸吸附耐蚀性能    
Abstract

Ca-P coating not only enhances the corrosion resistance of biodegradable magnesium alloys but also contributes to the formation of new bones and promotes bone integration around implants. However, the Ca-P coatings may have defects like porosity, low adhesion, and coarse grains, which lead to prefailure in the early stage and then the coatings cannot meet the requirements of long-term clinical service. Amino acids can induce the formation of calcium-bearing phosphates on biodegradable magnesium alloy. To clarify the influence of amino acid groups on film formation, Phenylalanine (Phe), Methionine (Met), and Asparagine (Asn) were used to regulate the degradation rate of magnesium alloy. Three amino acid-induced Ca-P (Ca-PPhe, Ca-PMet, and Ca-PAsn) coatings were prepared on AZ31 magnesium alloy via a constant temperature water bath method at a temperature of 60oC. Additionally, the morphology of the coatings, composition distributions, and phase structures were observed and analyzed via SEM, EDS, XRD, FTIR, and XPS. The corrosion resistance of the coating in simulated body fluid (Hank's solution) was investigated through electrochemical polarization, AC impedance, and hydrogen evolution tests. The formation mechanisms of amino acid additive-induced Ca-P (Ca-PPhe, Ca-PMet, and Ca-PAsn) coatings on AZ31 magnesium alloy were probed. Results showed that the thicknesses of Ca-P, Ca-PPhe, Ca-PMet, and Ca-PAsn coatings were about (3.47 ± 0.47), (6.06 ± 0.77), (7.63 ± 1.70), and (8.23 ± 1.37) μm, respectively. The main constituents of the amino acid-induced Ca-P coatings were CaHPO4 and Ca10(PO4)6(OH)2 (HA). The results of electrochemical polarization curves, EIS, and hydrogen evolution tests demonstrated that the addition of amino acids enhanced the corrosion resistance of the Ca-P coatings, which was ascribed to the inhibition and adsorption of amino acid molecules on AZ31 magnesium alloy. The adsorption of the amino group was mainly achieved through the coupling of the lone pair electrons of nitrogen atoms with the surface, whereas the carboxyl group combined with Mg2+ via their oxygen atoms. Additionally, heteroatoms in amino acids could share their lone pair electrons with the vacant molecular orbitals of the magnesium alloy. A formation mechanism of amino acid-induced Ca-P coating was proposed.

Key wordsAZ31 magnesium alloy    coating    amino acid    adsorption    corrosion resistance
收稿日期: 2021-02-01     
ZTFLH:  TG174  
基金资助:国家自然科学基金项目(52071191);山东省自然科学基金项目(ZR2020ME011);现代汽车零部件技术湖北省重点实验室开放课题项目(XDQCKF2021006)
作者简介: 王雪梅,女,1996年生,硕士生
图1  AZ31镁合金表面Ca-P涂层和3种氨基酸(苯丙氨酸、甲硫氨酸和天冬酰胺)诱导Ca-P涂层(Ca-PPhe、Ca-PMet和Ca-PAsn)制备流程图
图2  AZ31镁合金表面Ca-P涂层和3种氨基酸诱导Ca-P涂层的SEM像
PointCNOMgCaP
14.021.4838.7132.7114.408.68
23.940.8148.0528.8311.027.35
34.320.7463.3512.3210.778.50
43.570.8360.569.7914.2611.00
53.300.4860.4211.1714.2810.35
63.181.2363.745.4313.9612.45
72.841.5058.951.5218.0417.15
83.351.5244.312.9923.7324.00
93.111.0661.401.6816.6816.07
103.261.8638.993.3924.8727.63
113.061.3852.890.0620.6221.98
124.092.2139.936.0123.7424.02
表1  图2中点1~12的EDS分析结果 (atomic fraction / %)
图 3  AZ31镁合金表面Ca-P 涂层和3种氨基酸诱导Ca-P涂层截面形貌的SEM像和元素分布
图4  3种氨基酸诱导Ca-P涂层的XPS谱宽谱和精细谱(b, e, h) C1s (c, f, i) N1s
图5  AZ31镁合金表面Ca-P涂层和3种氨基酸诱导Ca-P涂层的Fourier红外光谱(FTIR)
图6  AZ31镁合金及其Ca-P涂层和3种氨基酸诱导Ca-P涂层的XRD谱
图 7  AZ31镁合金及其Ca-P涂层和3种氨基酸诱导Ca-P涂层的极化曲线
SampleEcorr / mVSCEicorr / (10-6 A·cm-2)βa / (mV·dec-1)βc / (mV·dec-1)Rp / (106 Ω·cm2)
AZ31-1481.4717.30258.19-127.672.14
Ca-P-1402.116.54257.40-230.008.06
Ca-PPhe-1435.363.80387.58-271.9818.29
Ca-PMet-1423.592.99315.89-241.7419.89
Ca-PAsn-1416.231.36145.42-111.5720.16
表2  AZ31 镁合金及其Ca-P 涂层和3种氨基酸诱导Ca-P涂层的Tafel极化曲线拟合数据
图8  AZ31 镁合金及其Ca-P涂层和3种氨基酸诱导Ca-P涂层的EIS分析
图9  AZ31镁合金及其Ca-P涂层和3种氨基酸诱导Ca-P涂层EIS的等效电路
SampleRsCPE1n1R1CPE2n2RctLRL
Ω·cm210-5 Ω-1·sn1·cm-2kΩ·cm210-5 Ω-1·sn2·cm-2Ω·cm2H·cm2Ω·cm2
AZ3185.881.2780.9056---578.5439.7231.5
Ca-P57.250.1360.6946-2.6160.6438593.83.76856.0
Ca-PPhe70.000.8750.6515289.61.5820.77577266.0--
Ca-PMet84.641.8590.6809226.31.6930.82977465.0--
Ca-PAsn80.930.7420.6782157.81.8730.81448552.0--
表3  AZ31镁合金、Ca-P涂层和3种氨基酸诱导Ca-P涂层的EIS拟合数据
图10  AZ31镁合金、Ca-P涂层和3种氨基酸诱导Ca-P涂层的析氢曲线
图11  AZ31镁合金、Ca-P涂层和3种氨基酸诱导Ca-P涂层浸泡160 h后的宏观形貌和SEM像
PointCNOMgCaP
13.981.4563.0714.168.728.61
26.021.0962.6015.067.627.60
35.790.9370.3410.795.206.95
48.201.9168.695.627.707.88
55.751.4570.741.339.0411.68
65.291.3265.103.5115.998.79
73.421.3161.385.9913.2014.69
811.404.9261.093.5210.208.87
912.385.0558.082.5111.3610.62
106.451.8663.703.4613.9610.57
116.961.9770.642.6910.557.19
125.611.8762.783.3314.2212.18
135.361.6560.923.7015.8312.97
144.921.7360.673.9316.6012.15
154.841.4661.372.4214.8415.07
表4  图11中点1~15的EDS分析结果 (atomic fraction / %)
图12  AZ31镁合金及其Ca-P涂层和3种氨基酸诱导Ca-P涂层浸泡160 h后的FTIR
图13  AZ31镁合金及其Ca-P涂层和3种氨基酸诱导Ca-P涂层浸泡160 h后的XRD谱
图14  Ca-PPhe、Ca-PMet和Ca-PAsn涂层的形成机理示意图
1 Zeng R C, Cui L Y, Ke W. Biomedical magnesium alloys: Composition, microstructure and corrosion [J]. Acta Metall. Sin., 2018, 54: 1215
1 曾荣昌, 崔蓝月, 柯 伟. 医用镁合金: 成分、组织及腐蚀 [J]. 金属学报, 2018, 54: 1215
2 Song Y W, Shan D Y, Chen R S, et al. Effect of second phases on the corrosion behaviour of wrought Mg-Zn-Y-Zr alloy [J]. Corros. Sci., 2010, 52: 1830
3 Zheng Y F, Yang H T. Research progress in biodegradable metals for stent application [J]. Acta Metall. Sin., 2017, 53: 1227
3 郑玉峰, 杨宏韬. 血管支架用可降解金属研究进展 [J]. 金属学报, 2017, 53: 1227
4 Gao G J, Zeng M Q, Zhang E L, et al. Dealloying corrosion of anodic and nanometric Mg41Nd5 in solid solution-treated Mg-3Nd-1Li-0.2Zn alloy [J]. J. Mater. Sci. Technol., 2021, 83: 161
5 Ding Z Y, Cui L Y, Zeng R C. Recent development of self-healing coating on magnesium alloys: A review [J]. Surf. Technol., 2019, 48(3): 1
5 丁自友, 崔蓝月, 曾荣昌. 镁合金表面自愈合涂层进展 [J]. 表面技术, 2019, 48(3): 1
6 Yin Z Z, Qi W C, Zeng R C, et al. Advances in coatings on biodegradable magnesium alloys [J]. J. Magnes. Alloys, 2020, 8: 42
7 Li C Y, Fan X L, Cui L Y, et al. Corrosion resistance and electrical conductivity of a nano ATO-doped MAO/methyltrimethoxysilane composite coating on magnesium alloy AZ31 [J]. Corros. Sci., 2020, 168: 108570
8 Córdoba L C, Marques A, Taryba M, et al. Hybrid coatings with collagen and chitosan for improved bioactivity of Mg alloys [J]. Surf. Coat. Technol., 2018, 341: 103
9 Li L Y, Cui L Y, Zeng R C, et al. Advances in functionalized polymer coatings on biodegradable magnesium alloys—A review [J]. Acta Biomater., 2018, 79: 23
10 Li J A, Chen L, Zhang X Q, et al. Enhancing biocompatibility and corrosion resistance of biodegradable Mg-Zn-Y-Nd alloy by preparing PDA/HA coating for potential application of cardiovascular biomaterials [J]. Mater. Sci. Eng., 2020, C109: 110607
11 Zhou P, Yu B X, Hou Y J, et al. Revisiting the cracking of chemical conversion coating on magnesium alloys [J]. Corros. Sci., 2021, 178: 109069
12 Li F, Yin Z Z, Zhang F, et al. Research advances of layered double hydroxides coatings on biomedical metals [J]. Surf. Technol., 2021, 50(2): 1
12 李 峰, 殷正正, 张 芬等. 生物医用金属表面水滑石涂层的研究进展 [J]. 表面技术, 2021, 50(2): 1
13 Han L Y, Li X, Xue F, et al. Biocorrosion behavior of micro-arc-oxidized AZ31 magnesium alloy in different simulated dynamic physiological environments [J]. Surf. Coat. Technol., 2019, 361: 240
14 Zhang Z Q, Wang L, Zeng M Q, et al. Biodegradation behavior of micro-arc oxidation coating on magnesium alloy—From a protein perspective [J]. Bioact. Mater., 2020, 5: 398
15 Ding R, Chen S, Lv J, et al. Study on graphene modified organic anti-corrosion coatings: A comprehensive review [J]. J. Alloys Compd., 2019, 806: 611
16 Yang Y X, Fang Z, Liu Y H, et al. Biodegradation, hemocompatibility and covalent bonding mechanism of electrografting polyethylacrylate coating on Mg alloy for cardiovascular stent [J]. J. Mater. Sci. Technol., 2020, 46: 114
17 Ashassi-Sorkhabi H, Moradi-Alavian S, Esrafili M D, et al. Hybrid sol-gel coatings based on silanes-amino acids for corrosion protection of AZ91 magnesium alloy: Electrochemical and DFT insights [J]. Prog. Org. Coat., 2019, 131: 191
18 Wang L N, Liu L J, Yan Y, et al. Influences of protein adsorption on the in vitro corrosion of biomedical metals [J]. Acta Metall. Sin., 2021, 57: 1
18 王鲁宁, 刘丽君, 岩 雨等. 蛋白质吸附对医用金属材料体外腐蚀行为的影响 [J]. 金属学报, 2021, 57: 1
19 Qian J H, Zhang S Q, Liu L. The corrosion inhibition action of five amino acid compounds on copper in HCl solution [J]. Chemistry, 2014, 77: 170
19 钱建华, 张思倩, 刘 琳. 五种氨基酸在HCl溶液中对铜的缓蚀作用 [J]. 化学通报, 2014, 77: 170
20 Stimpfling T, Vialat P, Hintze-Bruening H, et al. Amino acid interleaved layered double hydroxides as promising hybrid materials for AA2024 corrosion inhibition [J]. Eur. J. Inorg. Chem., 2016, 2016: 2006
21 Zhang J, Yan Y G, Ren Z J, et al. Experimental evaluation of inhibition performance and inhibition mechanism analysis of amino acid inhibitors [J]. J. China Univ. Petrol. (Ed. Nat. Sci.), 2010, 34(3): 152
21 张 军, 燕友果, 任振甲等. 氨基酸缓蚀剂缓蚀性能的实验评价与缓蚀机制分析 [J]. 中国石油大学学报(自然科学版), 2010, 34(3): 152
22 El-Hafez G M, Badawy W A. The use of cysteine, N-acetyl cysteine and methionine as environmentally friendly corrosion inhibitors for Cu-10Al-5Ni alloy in neutral chloride solutions [J]. Electrochim. Acta, 2013, 108: 860
23 Zhao R X, Xu W D, Yu Q, et al. Synergistic effect of SAMs of S-containing amino acids and surfactant on corrosion inhibition of 316L stainless steel in 0.5 M NaCl solution [J]. J. Mol. Liq., 2020, 318: 114322
24 Wang Y, Ding B H, Gao S Y, et al. In vitro corrosion of pure Mg in phosphate buffer solution—Influences of isoelectric point and molecular structure of amino acids [J]. Mater. Sci. Eng., 2019, C105: 110042
25 Fan X L, Li C Y, Wang Y B, et al. Corrosion resistance of an amino acid-bioinspired calcium phosphate coating on magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2020, 49: 224
26 Mei D, Lamaka S V, Feiler C, et al. The effect of small-molecule bio-relevant organic components at low concentration on the corrosion of commercially pure Mg and Mg-0.8Ca alloy: An overall perspective [J]. Corros. Sci., 2019, 153: 258
27 Li Q T, Ye W B, Gao H, et al. Improving the corrosion resistance of ZEK100 magnesium alloy by combining high-pressure torsion technology with hydroxyapatite coating [J]. Mater. Des., 2019, 181: 107933
28 Cui L Y, Cheng S C, Liang L X, et al. In vitro corrosion resistance of layer-by-layer assembled polyacrylic acid multilayers induced Ca-P coating on magnesium alloy AZ31 [J]. Bioact. Mater., 2020, 5: 153
29 Duan G Q, Yang L X, Liao S J, et al. Designing for the chemical conversion coating with high corrosion resistance and low electrical contact resistance on AZ91D magnesium alloy [J]. Corros. Sci., 2018, 135: 197
30 Jian S Y, Chu Y R, Lin C S. Permanganate conversion coating on AZ31 magnesium alloys with enhanced corrosion resistance [J]. Corros. Sci., 2015, 93: 301
31 Li C Y, Fan X L, Zeng R C, et al. Corrosion resistance of in-situ growth of nano-sized Mg(OH)2 on micro-arc oxidized magnesium alloy AZ31—Influence of EDTA [J]. J. Mater. Sci. Technol., 2019, 35: 1088
32 Song Y W, Han E H, Dong K H, et al. Study of the corrosion product films formed on the surface of Mg-xZn alloys in NaCl solution [J]. Corros. Sci., 2014, 88: 215
33 Gomes M P, Costa I, Pébère N, et al. On the corrosion mechanism of Mg investigated by electrochemical impedance spectroscopy [J]. Electrochim. Acta, 2019, 306: 61
34 Guo Y T, Su Y C, Gu R, et al. Enhanced corrosion resistance and biocompatibility of biodegradable magnesium alloy modified by calcium phosphate/collagen coating [J]. Surf. Coat. Technol., 2020, 401: 126318
35 Liu L, Yang Q Y, Huang L, et al. The effects of a phytic acid/calcium ion conversion coating on the corrosion behavior and osteoinductivity of a magnesium-strontium alloy [J]. Appl. Surf. Sci., 2019, 484: 511
36 Yan W, Lian Y J, Zhang Z Y, et al. In vitro degradation of pure magnesium—The synergetic influences of glucose and albumin [J]. Bioact. Mater., 2020, 5: 318
37 Cui L Y, Wei G B, Han Z Z, et al. In vitro corrosion resistance and antibacterial performance of novel tin dioxide-doped calcium phosphate coating on degradable Mg-1Li-1Ca alloy [J]. J. Mater. Sci. Technol., 2019, 35: 254
38 Liu W, Yan Z J, Zhang Z D, et al. Bioactive and anti-corrosive bio-MOF-1 coating on magnesium alloy for bone repair application [J]. J. Alloys Compd., 2019, 788: 705
39 Zhang Z Q, Zeng R C, Lin C G, et al. Corrosion resistance of self-cleaning silane/polypropylene composite coatings on magnesium alloy AZ31 [J]. Mater. Sci. Technol., 2020, 41: 43
40 Guo Y T, Jia S Q, Qiao L, et al. Enhanced corrosion resistance and biocompatibility of polydopamine/dicalcium phosphate dihydrate/collagen composite coating on magnesium alloy for orthopedic applications [J]. J. Alloys Compd., 2020, 817: 152782
41 Fang Z, Wang J F, Yang X F, et al. Adsorption of arginine, glycine and aspartic acid on Mg and Mg-based alloy surfaces: A first-principles study [J]. Appl. Surf. Sci., 2017, 409: 149
42 Nie Y J, Gao J X, Wang E D, et al. An effective hybrid organic/inorganic inhibitor for alkaline aluminum-air fuel cells [J]. Electrochim. Acta, 2017, 248: 478
43 Ashraf M A, Liu Z L, Peng W X, et al. Amino acid and TiO2 nanoparticles mixture inserted into sol-gel coatings: An efficient corrosion protection system for AZ91 magnesium alloy [J]. Prog. Org. Coat., 2019, 136: 105296
44 Fang Z, Wang J F, Zhu S J, et al. A DFT study of the adsorption of short peptides on Mg and Mg-based alloy surfaces [J]. Phys. Chem. Chem. Phys., 2018, 20: 3602
45 Ashassi-Sorkhabi H, Moradi-Alavian S, Jafari R, et al. Effect of amino acids and montmorillonite nanoparticles on improving the corrosion protection characteristics of hybrid sol-gel coating applied on AZ91 Mg alloy [J]. Mater. Chem. Phys., 2019, 225: 298
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[3] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[4] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[5] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[6] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[7] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[8] 李斗, 徐长江, 李旭光, 李双明, 钟宏. La掺杂PCeyFe3CoSb12 热电材料及涂层的热电性能[J]. 金属学报, 2023, 59(2): 237-247.
[9] 丛鸿达, 王金龙, 王成, 宁珅, 高若恒, 杜瑶, 陈明辉, 朱圣龙, 王福会. 新型无机硅酸盐复合涂层制备及其在高温水蒸气环境的氧化行为[J]. 金属学报, 2022, 58(8): 1083-1092.
[10] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[11] 王浩伟, 赵德超, 汪明亮. 原位自生TiB2/Al基复合材料的腐蚀防护技术研究现状[J]. 金属学报, 2022, 58(4): 428-443.
[12] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[13] 冯凯, 郭彦兵, 冯育磊, 姚成武, 朱彦彦, 张群莉, 李铸国. 激光熔覆高强韧铁基涂层精细组织调控与性能研究[J]. 金属学报, 2022, 58(4): 513-528.
[14] 张世宏, 胡凯, 刘侠, 杨阳. 发电锅炉材料与防护涂层的磨蚀机制与研究展望[J]. 金属学报, 2022, 58(3): 272-294.
[15] 董昕远, 雒晓涛, 李成新, 李长久. B清除大气等离子喷涂CuNi熔滴氧化物效应[J]. 金属学报, 2022, 58(2): 206-214.