Please wait a minute...
金属学报  2022, Vol. 58 Issue (1): 114-128    DOI: 10.11900/0412.1961.2021.00222
  研究论文 本期目录 | 过刊浏览 |
“工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织
李少杰1, 金剑锋1,2(), 宋宇豪1, 王明涛1, 唐帅2, 宗亚平1, 秦高梧1()
1. 东北大学 材料科学与工程学院 沈阳 110819
2. 东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819
Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property
LI Shaojie1, JIN Jianfeng1,2(), SONG Yuhao1, WANG Mingtao1, TANG Shuai2, ZONG Yaping1, QIN Gaowu1()
1. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
引用本文:

李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.
Shaojie LI, Jianfeng JIN, Yuhao SONG, Mingtao WANG, Shuai TANG, Yaping ZONG, Gaowu QIN. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property”[J]. Acta Metall Sin, 2022, 58(1): 114-128.

全文: PDF(3490 KB)   HTML
摘要: 

以Mg-8Gd-3Y-0.5Zr (GW83K)镁合金为研究对象,探索通过调控混晶显微组织来提高其力学性能的途径。将具有混晶组织的合金抽象为一种不同尺寸的晶粒嵌入到晶界中的颗粒复合体模型,在该模型中基体相为晶界,不同的颗粒相是不同尺寸的晶粒;然后基于Taylor关系的非局部塑性理论修正不同粒子嵌入到基体后对基体性能的影响,建立具有混晶组织特征的有限元平面应变细观力学模型。采用该模型模拟了含有混晶组织的GW83K镁合金在拉伸条件下的应力-应变行为,模拟结果对比实验数据验证了模型的有效性。在此基础上,通过真实时空相场模拟出的不同退火工艺下的混晶组织作为力学模型的几何输入参数,建立“工艺参数-混晶组织-力学性能”之间的关系。模拟结果对比发现,具有混晶组织的GW83K镁合金强度随平均晶粒尺寸的变化符合Hall-Petch关系,粗晶含量和分布显著影响着合金的塑性,当合金在623 K下退火90 min后对应的混晶组织可在保持高强度的同时有效提升塑性,为混晶组织的设计提供了参考。

关键词 镁合金混晶组织力学性能显微组织设计有限元法    
Abstract

Rare earth Mg alloys containing Gd elements can be used in aerospace, automotive, and other industrial fields owing to their high strength and creep resistance at room and high temperatures. However, the poor ductility of Mg alloys limits their application. Recently, it was discovered that the ductility of Mg alloy can be improved without compromising on its strength if sufficient amount of coarse grains is distributed in fine grains. In this study, taking the Mg-8Gd-3Y-0.5Zr (GW83K) alloy as an example, an approach for optimizing multimodal microstructures was investigated, which aimed to improve the mechanical properties of alloys. An alloy with a multimodal grain structure can be used as a particulate compound model, in which the grain boundary is considered the matrix, and different-sized grains are treated as different-types of particles embedded into the grain boundary matrix. A 2D finite element micromechanics model combined with Taylor-based nonlocal plasticity theory, which considers the size effect of the particles, was established to simulate the mechanical response of the multimodal structure Mg alloy in a tensile test. The model was verified through the experimental data of the stress-strain curve. Moreover, the effects of process parameters on the mechanical properties of the GW83K alloy were further evaluated by combining the grain structure under different annealing processes, simulated from a real space-time phase-field model as the geometric input of the finite element model. Finally, the relationships between the annealing parameters, multimodal structure, and mechanical properties of the GW83K alloy were described. The results show that the yield and tensile strengthes of the multimodal GW83K alloy presented a Hall-Petch relationship with the average grain size. The content and distribution of coarse grains greatly affected the plasticity of the GW83K alloy. By annealing the GW83K alloy at 623 K for 90 min, better plasticity could be achieved without sacrificing strength, which is helpful in promoting multimodal microstructural design.

Key wordsmagnesium alloy    multimodal grain    mechanical property    microstructural design    finite element method
收稿日期: 2021-05-21     
ZTFLH:  TG113.25  
基金资助:国家重点研发计划项目(2016YFB0701204);高等学校学科创新引智计划项目(B20029);中央高校基本科研业务费专项资金项目(N2007011)
作者简介: 李少杰,男,1995年生,博士生
图1  GW83K镁合金在623、673和723 K时的自由能成分点和拟合曲线
T A A 1 A 2 B 1 B 2 L ̂ c 1 ϕ 2nd f 2nd d 2nd
K kJ·mol-1 kJ·mol-1 kJ·mol-1 kJ·mol-1 kJ·mol-1 mol·s-1·J-1 % μm
623 -49.2 297.3 -775.2 371 51.2 0.45 0.46 Lath 0.67 1-2
673 -52.6 308 -869.6 365.7 51.2 1.22 0.46 Lath 1.35 1-2
723 -55.9 322.4 -901.1 373.7 51.2 2.72 0.46 Sphere 1.35 1-2
表1  晶粒生长相场模型中的参数
图2  不同退火工艺下相场模拟与实验[67]得到的平均晶粒尺寸
图3  真实混晶组织有限元模型构建示意图
图4  具有不同晶粒尺寸的单晶粒相GW83K镁合金的实验拉伸应力-应变曲线及其本构输入曲线
图5  GW83K镁合金有限元模型的模拟结果
Model Annealing temperature Annealing time
No. K min
1 623 60
2 623 75
3 623 90
4 673 60
5 673 75
6 673 90
7 723 60
8 723 75
9 723 90
表2  GW83K镁合金相场模型中不同退火温度与退火时间的取值
图6  不同退火工艺的GW83K镁合金显微组织与晶粒尺寸分布
图7  不同退火温度、退火时间下的GW83K镁合金再结晶晶粒组织图及有限元几何模型(对应为模型Nos.1~9)
图8  GW83K镁合金的9个有限元模型中晶界占比、平均晶粒尺寸和晶粒尺寸分布
图9  不同退火工艺的GW83K镁合金有限元模型模拟结果
图10  经过723 K退火90 min后,有/无第二相粒子的GW83K镁合金有限元模拟结果
1 Shibata T , Kawanishi M , Nagahora J , et al . High specific strength of extruded Mg-Al-Ge alloys produced by rapid solidification processing [J]. Mater. Sci. Eng., 1994, A179-180: 632
2 Decker R F . The renaissance in magnesium [J]. Adv. Mater. Process., 1998, 154: 31
3 Mukai T , Mohri T , Mabuchi M , et al . Experimental study of a structural magnesium alloy with high absorption energy under dynamic loading [J]. Scr. Mater., 1998, 39: 1249
4 Li S B , Yang X Y , Hou J T , et al . A review on thermal conductivity of magnesium and its alloys [J]. J. Magnes. Alloy., 2020, 8: 78
5 Han G M , Han Z Q , Luo A A , et al . Microstructure characteristics and effect of aging process on the mechanical properties of squeeze-cast AZ91 alloy [J]. J. Alloys Compd., 2015, 641: 56
6 Tang W R , Liu Z , Liu S M , et al . Deformation mechanism of fine grained Mg-7Gd-5Y-1.2Nd-0.5Zr alloy under high temperature and high strain rates [J]. J. Magnes. Alloys, 2020, 8: 1144
7 Liu X B , Chen R S , Han E H . High temperature deformations of Mg-Y-Nd alloys fabricated by different routes [J]. Mater. Sci. Eng., 2008, A497: 326
8 Zhang P , Ding W J , Lindemann J , et al . Mechanical properties of the hot-rolled Mg-12Gd-3Y magnesium alloy [J]. Mater. Chem. Phys., 2009, 118: 453
9 Liu H H , Ning Z L , Yi J Y , et al . Effect of Dy addition on microstructure and mechanical properties of Mg-4Y-3Nd-0.4Zr alloy [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 797
10 Liu X F , Chen X H , Li J B , et al . Effect of micro-alloying Ca on microstructure, texture and mechanical properties of Mg-Zn-Y-Ce alloys [J]. Prog. Nat. Sci. Mater., 2020, 30: 213
11 Zhang T X , Zhao X T , Liu J H , et al . The microstructure, fracture mechanism and their correlation with the mechanical properties of as-cast Mg-Nd-Zn-Zr alloy under the effect of cooling rate [J]. Mater. Sci. Eng., 2021, A801: 140382
12 Kou H N , Lu J , Li Y . High-strength and high-ductility nanostructured and amorphous metallic materials [J]. Adv. Mater., 2014, 26: 5518
13 He J H , Jin L , Wang F H , et al . Mechanical properties of Mg-8Gd-3Y-0.5Zr alloy with bimodal grain size distributions [J]. J. Magnes. Alloys, 2017, 5: 423
14 Xu C , Fan G H , Nakata T , et al . Deformation behavior of ultra-strong and ductile Mg-Gd-Y-Zn-Zr alloy with bimodal microstructure [J]. Metall. Mater. Trans., 2018, 49A: 1931
15 Zhang H , Wang H Y , Wang J G , et al . The synergy effect of fine and coarse grains on enhanced ductility of bimodal-structured Mg alloys [J]. J. Alloys Compd., 2019, 780: 312
16 Jin Z Z , Zha M , Yu Z Y , et al . Exploring the Hall-Petch relation and strengthening mechanism of bimodal-grained Mg-Al-Zn alloys [J]. J. Alloys Compd., 2020, 833: 155004
17 Wei X X , Jin L , Wang F H , et al . High strength and ductility Mg-8Gd-3Y-0.5Zr alloy with bimodal structure and nano-precipitates [J]. J. Mater. Sci. Technol., 2020, 44: 19
18 Liu S S , Zhang J L , Chen X , et al . Improving mechanical properties of heterogeneous Mg-Gd alloy laminate via accumulated extrusion bonding [J]. Mater. Sci. Eng., 2020, A785: 139324
19 Xu C , Zheng M Y , Xu S W , et al . Ultra high-strength Mg-Gd-Y-Zn-Zr alloy sheets processed by large-strain hot rolling and ageing [J]. Mater. Sci. Eng., 2012, A547: 93
20 Peng P , Tang A T , She J , et al . Significant improvement in yield stress of Mg-Gd-Mn alloy by forming bimodal grain structure [J]. Mater. Sci. Eng., 2021, A803: 140569
21 Dobkowska A , Adamczyk-Cieślak B , Kubásek J , et al . Microstructure and corrosion resistance of a duplex structured Mg-7.5Li-3Al-1Zn [J]. J. Magnes. Alloys, 2021, 9: 467
22 Li Y K , Zha M , Jia H L , et al . Tailoring bimodal grain structure of Mg-9Al-1Zn alloy for strength-ductility synergy: Co-regulating effect from coarse Al2Y and submicron Mg17Al12 particles [J]. J. Magnes. Alloys, 2021,9: 1556
23 Wang H Y , Yu Z P , Zhang L , et al . Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process [J]. Sci. Rep., 2015, 5: 17100
24 Gao M , Yang K , Tan L L , et al . Role of bimodal-grained structure with random texture on mechanical and corrosion properties of a Mg-Zn-Nd alloy [J]. J. Magnes. Alloys, 2021, doi: 10.1016/j.jma.2021.03.024
25 Cubides Y , Karayan A I , Vaughan M W , et al . Enhanced mechanical properties and corrosion resistance of a fine-grained Mg-9Al-1Zn alloy: The role of bimodal grain structure and β-Mg17Al12 precipitates [J]. Materialia, 2020, 13: 100840
26 Asqardoust S , Hanzaki A Z , Abedi H R , et al . Enhancing the strength and ductility in accumulative back extruded WE43 magnesium alloy through achieving bimodal grain size distribution and texture weakening [J]. Mater. Sci. Eng., 2017, A698: 218
27 Lu K . Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345: 1455
28 Wu X L , Yang M X , Yuan F P , et al . Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
29 Zhu Y T , Wu X L . Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7: 393
30 Wu J L , Jin L , Dong J , et al . The texture and its optimization in magnesium alloy [J]. J. Mater. Sci. Technol., 2020, 42: 175
31 Zheng R X , Du J P , Gao S , et al . Transition of dominant deformation mode in bulk polycrystalline pure Mg by ultra-grain refinement down to sub-micrometer [J]. Acta Mater., 2020, 198: 35
32 Li X X , Xu D S , Yang R . Crystal plasticity finite element method investigation of the high temperature deformation consistency in dual-phase titanium alloy [J]. Acta Metall. Sin., 2019, 55: 928
32 李学雄, 徐东生, 杨 锐 . 双相钛合金高温变形协调性的CPFEM研究 [J]. 金属学报, 2019, 55: 928
33 Zhang Y , Chen H , Jia Y F , et al . A modified kinematic hardening model considering hetero-deformation induced hardening for bimodal structure based on crystal plasticity [J]. Int. J. Mech. Sci., 2021, 191: 106068
34 Joshi S P , Ramesh K T , Han B Q , et al . Modeling the constitutive response of bimodal metals [J]. Metall. Mater. Trans., 2006, 37A: 2397
35 Yadollahpour M , Hosseini-Toudeshky H . Material properties and failure prediction of ultrafine grained materials with bimodal grain size distribution [J]. Eng. Comput., 2017, 33: 125
36 Guo X , Dai X Y , Zhu L L , et al . Numerical investigation of fracture behavior of nanostructured Cu with bimodal grain size distribution [J]. Acta. Mech., 2014, 225: 1093
37 Dai L H , Ling Z , Bai Y L . Size-dependent inelastic behavior of particle-reinforced metal-matrix composites [J]. Compos. Sci. Technol., 2001, 61: 1057
38 Gao H J , Huang Y G . Taylor-based nonlocal theory of plasticity [J]. Int. J. Solids Struct., 2001, 38: 2615
39 Gao H J , Huang Y , Nix W D , et al . Mechanism-based strain gradient plasticity—I. Theory [J]. J. Mech. Phys. Solids, 1999, 47: 1239
40 Huang Y , Qu S , Hwang K C , et al . A conventional theory of mechanism-based strain gradient plasticity [J]. Int. J. Plast., 2004, 20: 753
41 Shao J C , Xiao B L , Wang Q Z , et al . An enhanced FEM model for particle size dependent flow strengthening and interface damage in particle reinforced metal matrix composites [J]. Compos. Sci. Technol., 2011, 71: 39
42 Cao J Y , Jin J F , Wang L , et al . Finite-element modeling of particle size effect on mechanical properties of SiCp/Fe composites [J]. IOP Conf. Ser. Mater. Sci. Eng., 2018, 422: 012001
43 Zhang J F , Zhang X X , Wang Q Z , et al . Simulation of anisotropic load transfer and stress distribution in SiCp/Al composites subjected to tensile loading [J]. Mech. Mater., 2018, 122: 96
44 Gao X , Zhang X X , Geng L . Strengthening and fracture behaviors in SiCp/Al composites with network particle distribution architecture [J]. Mater. Sci. Eng., 2019, A740-741: 353
45 Schwaiger R , Moser B , Dao M , et al . Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel [J]. Acta Mater., 2003, 51: 5159
46 Wang M T , Zong B Y , Wang G . A phase-field model to simulate recrystallization in an AZ31 Mg alloy in comparison of experimental data [J]. J. Mater. Sci. Technol., 2008, 24: 829
47 Taylor G I . Plastic strain in metals [J]. J. Inst. Met., 1938, 62: 307
48 Mecking H , Kocks U F . Kinetics of flow and strain-hardening [J]. Acta Metall., 1981, 29: 1865
49 Nix W D , Gao H J . Indentation size effects in crystalline materials: A law for strain gradient plasticity [J]. J. Mech. Phys. Solids, 1998, 46: 411
50 Chawla N , Ganesh V V , Wunsch B . Three-dimensional (3D) microstructure visualization and finite element modeling of the mechanical behavior of SiC particle reinforced aluminum composites [J]. Scr. Mater., 2004, 51: 161
51 Chawla N , Chawla K K . Microstructure-based modeling of the deformation behavior of particle reinforced metal matrix composites [J]. J. Mater. Sci., 2006, 41: 913
52 Uthaisangsuk V , Prahl U , Bleck W . Micromechanical modelling of damage behaviour of multiphase steels [J]. Comput. Mater. Sci., 2008, 43: 27
53 Choi K S , Liu W N , Sun X , et al . Microstructure-based constitutive modeling of TRIP steel: Prediction of ductility and failure modes under different loading conditions [J]. Acta Mater., 2009, 57: 2592
54 Uthaisangsuk V , Prahl U , Bleck W . Modelling of damage and failure in multiphase high strength DP and TRIP steels [J]. Eng. Fract. Mech., 2011, 78: 469
55 Ayari F , Ayari F , Bayraktar E , et al . Image processing and finite element modelling for analysis of a metal matrix composite [J]. Int. J. Comput. Sci. Iss., 2012, 9: 448
56 Ramazani A , Mukherjee K , Quade H , et al . Correlation between 2D and 3D flow curve modelling of DP steels using a microstructure-based RVE approach [J]. Mater. Sci. Eng., 2013, A560: 129
57 Qayyum F , Umar M , Guk S , et al . Effect of the 3rd dimension within the representative volume element (RVE) on damage initiation and propagation during full-phase numerical simulations of single and multi-phase steels [J]. Materials, 2021, 14: 42
58 Cao J , Zhuang W , Wang S , et al . An integrated crystal plasticity FE system for microforming simulation [J]. J. Multiscale Model., 2009, 1: 107
59 Zhang P , Karimpour M , Balint D , et al . A controlled poisson voronoi tessellation for grain and cohesive boundary generation applied to crystal plasticity analysis [J]. Comput. Mater. Sci., 2012, 64: 84
60 Song Y H , Wang M T , Zong Y P , et al . Grain refinement by second phase particles under applied stress in ZK60 Mg alloy with Y through phase field simulation [J]. Materials, 2018, 11: 1903
61 He R , Wang M T , Zhang X G , et al . Influence of second-phase particles on grain growth in AZ31 magnesium alloy during equal channel angular pressing by phase field simulation [J]. Modell. Simul. Mater. Sci. Eng., 2016, 24: 055017
62 Han G M , Han Z Q , Luo A A , et al . A phase field model for simulating the precipitation of multi-variant β-Mg17Al12 in Mg-Al-based alloys [J]. Scr. Mater., 2013, 68: 691
63 Shang S , Guo Z P , Han Z Q . On the kinetics of dendritic sidebranching: A three dimensional phase field study [J]. J. Appl. Phys., 2016, 119: 164305
64 Cahn J W . On spinodal decomposition [J]. Acta Metall., 1961, 9: 795
65 Allen S M , Cahn J W . A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening [J]. Acta Metall., 1979, 27: 1085
66 Fan D , Chen L Q . Computer simulation of grain growth using a continuum field model [J]. Acta Mater., 1997, 45: 611
67 Li L , Jie W , Wu Y Z , et al . Effect of static annealing on microstructure and texture in extruded Mg-Gd-Y-Zr Alloy [J]. Rare Met. Mater. Eng., 2016, 45: 2263
68 Verdier M , Groma I , Flandin L , et al . Dislocation densities and stored energy after cold rolling of Al-Mg alloys: Investigations by resistivity and differential scanning calorimetry [J]. Scr. Mater., 1997, 37: 449
69 Andersson J O , Helander T , Höglund L , et al . Thermo-Calc & DICTRA, computational tools for materials science [J]. Calphad, 2002, 26: 273
70 Ganeshan S , Shang S L , Wang Y , et al . Effect of alloying elements on the elastic properties of Mg from first-principles calculations [J]. Acta Mater., 2009, 57: 3876
71 Polk D E , Giessen B C , Gardner F S . State-of-the-art and prospects for magnetic, electronic and mechanical applications of amorphous metals A synopsis of the ONR materials workshop at Northeastern University, Boston, Mass., November 20-21, 1975 [J]. Mater. Sci. Eng., 1976, 23: 309
72 Kim H S , Estrin Y , Bush M B . Plastic deformation behaviour of fine-grained materials [J]. Acta Mater., 2000, 48: 493
73 Fu H H , Benson D J , Meyers M A . Analytical and computational description of effect of grain size on yield stress of metals [J]. Acta Mater., 2001, 49: 2567
74 Li J , Zhao M J , Jin L , et al . Simultaneously improving strength and ductility through laminate structure design in Mg-8.0Gd- 3.0Y-0.5Zr alloys [J]. J. Mater. Sci. Technol., 2021, 71: 195
75 Warlimont H , Martienssen W . Springer Handbook of Materials Data [M]. 2nd Ed., Switzerland: Springer, 2018: 65
76 Shang X Q , Zhang H M , Wang L Y , et al . The effect of stress state and strain partition mode on the damage behavior of a Mg-Ca alloy [J]. Int. J. Plast., 2021, 144: 103040
77 Gao L , Zhou J , Sun Z M , et al . First-principles calculations of the β′-Mg7Gd precipitate in Mg-Gd binary alloys [J]. Chin. Sci. Bull., 2011, 56: 1142
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[14] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.