|
|
“工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织 |
李少杰1, 金剑锋1,2( ), 宋宇豪1, 王明涛1, 唐帅2, 宗亚平1, 秦高梧1( ) |
1. 东北大学 材料科学与工程学院 沈阳 110819 2. 东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819 |
|
Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of “Process-Structure-Property” |
LI Shaojie1, JIN Jianfeng1,2( ), SONG Yuhao1, WANG Mingtao1, TANG Shuai2, ZONG Yaping1, QIN Gaowu1( ) |
1. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 2. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China |
引用本文:
李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.
Shaojie LI,
Jianfeng JIN,
Yuhao SONG,
Mingtao WANG,
Shuai TANG,
Yaping ZONG,
Gaowu QIN.
Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of “Process-Structure-Property”[J]. Acta Metall Sin, 2022, 58(1): 114-128.
1 |
Shibata T , Kawanishi M , Nagahora J , et al . High specific strength of extruded Mg-Al-Ge alloys produced by rapid solidification processing [J]. Mater. Sci. Eng., 1994, A179-180: 632
|
2 |
Decker R F . The renaissance in magnesium [J]. Adv. Mater. Process., 1998, 154: 31
|
3 |
Mukai T , Mohri T , Mabuchi M , et al . Experimental study of a structural magnesium alloy with high absorption energy under dynamic loading [J]. Scr. Mater., 1998, 39: 1249
|
4 |
Li S B , Yang X Y , Hou J T , et al . A review on thermal conductivity of magnesium and its alloys [J]. J. Magnes. Alloy., 2020, 8: 78
|
5 |
Han G M , Han Z Q , Luo A A , et al . Microstructure characteristics and effect of aging process on the mechanical properties of squeeze-cast AZ91 alloy [J]. J. Alloys Compd., 2015, 641: 56
|
6 |
Tang W R , Liu Z , Liu S M , et al . Deformation mechanism of fine grained Mg-7Gd-5Y-1.2Nd-0.5Zr alloy under high temperature and high strain rates [J]. J. Magnes. Alloys, 2020, 8: 1144
|
7 |
Liu X B , Chen R S , Han E H . High temperature deformations of Mg-Y-Nd alloys fabricated by different routes [J]. Mater. Sci. Eng., 2008, A497: 326
|
8 |
Zhang P , Ding W J , Lindemann J , et al . Mechanical properties of the hot-rolled Mg-12Gd-3Y magnesium alloy [J]. Mater. Chem. Phys., 2009, 118: 453
|
9 |
Liu H H , Ning Z L , Yi J Y , et al . Effect of Dy addition on microstructure and mechanical properties of Mg-4Y-3Nd-0.4Zr alloy [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 797
|
10 |
Liu X F , Chen X H , Li J B , et al . Effect of micro-alloying Ca on microstructure, texture and mechanical properties of Mg-Zn-Y-Ce alloys [J]. Prog. Nat. Sci. Mater., 2020, 30: 213
|
11 |
Zhang T X , Zhao X T , Liu J H , et al . The microstructure, fracture mechanism and their correlation with the mechanical properties of as-cast Mg-Nd-Zn-Zr alloy under the effect of cooling rate [J]. Mater. Sci. Eng., 2021, A801: 140382
|
12 |
Kou H N , Lu J , Li Y . High-strength and high-ductility nanostructured and amorphous metallic materials [J]. Adv. Mater., 2014, 26: 5518
|
13 |
He J H , Jin L , Wang F H , et al . Mechanical properties of Mg-8Gd-3Y-0.5Zr alloy with bimodal grain size distributions [J]. J. Magnes. Alloys, 2017, 5: 423
|
14 |
Xu C , Fan G H , Nakata T , et al . Deformation behavior of ultra-strong and ductile Mg-Gd-Y-Zn-Zr alloy with bimodal microstructure [J]. Metall. Mater. Trans., 2018, 49A: 1931
|
15 |
Zhang H , Wang H Y , Wang J G , et al . The synergy effect of fine and coarse grains on enhanced ductility of bimodal-structured Mg alloys [J]. J. Alloys Compd., 2019, 780: 312
|
16 |
Jin Z Z , Zha M , Yu Z Y , et al . Exploring the Hall-Petch relation and strengthening mechanism of bimodal-grained Mg-Al-Zn alloys [J]. J. Alloys Compd., 2020, 833: 155004
|
17 |
Wei X X , Jin L , Wang F H , et al . High strength and ductility Mg-8Gd-3Y-0.5Zr alloy with bimodal structure and nano-precipitates [J]. J. Mater. Sci. Technol., 2020, 44: 19
|
18 |
Liu S S , Zhang J L , Chen X , et al . Improving mechanical properties of heterogeneous Mg-Gd alloy laminate via accumulated extrusion bonding [J]. Mater. Sci. Eng., 2020, A785: 139324
|
19 |
Xu C , Zheng M Y , Xu S W , et al . Ultra high-strength Mg-Gd-Y-Zn-Zr alloy sheets processed by large-strain hot rolling and ageing [J]. Mater. Sci. Eng., 2012, A547: 93
|
20 |
Peng P , Tang A T , She J , et al . Significant improvement in yield stress of Mg-Gd-Mn alloy by forming bimodal grain structure [J]. Mater. Sci. Eng., 2021, A803: 140569
|
21 |
Dobkowska A , Adamczyk-Cieślak B , Kubásek J , et al . Microstructure and corrosion resistance of a duplex structured Mg-7.5Li-3Al-1Zn [J]. J. Magnes. Alloys, 2021, 9: 467
|
22 |
Li Y K , Zha M , Jia H L , et al . Tailoring bimodal grain structure of Mg-9Al-1Zn alloy for strength-ductility synergy: Co-regulating effect from coarse Al2Y and submicron Mg17Al12 particles [J]. J. Magnes. Alloys, 2021,9: 1556
|
23 |
Wang H Y , Yu Z P , Zhang L , et al . Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process [J]. Sci. Rep., 2015, 5: 17100
|
24 |
Gao M , Yang K , Tan L L , et al . Role of bimodal-grained structure with random texture on mechanical and corrosion properties of a Mg-Zn-Nd alloy [J]. J. Magnes. Alloys, 2021, doi: 10.1016/j.jma.2021.03.024
|
25 |
Cubides Y , Karayan A I , Vaughan M W , et al . Enhanced mechanical properties and corrosion resistance of a fine-grained Mg-9Al-1Zn alloy: The role of bimodal grain structure and β-Mg17Al12 precipitates [J]. Materialia, 2020, 13: 100840
|
26 |
Asqardoust S , Hanzaki A Z , Abedi H R , et al . Enhancing the strength and ductility in accumulative back extruded WE43 magnesium alloy through achieving bimodal grain size distribution and texture weakening [J]. Mater. Sci. Eng., 2017, A698: 218
|
27 |
Lu K . Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345: 1455
|
28 |
Wu X L , Yang M X , Yuan F P , et al . Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
|
29 |
Zhu Y T , Wu X L . Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7: 393
|
30 |
Wu J L , Jin L , Dong J , et al . The texture and its optimization in magnesium alloy [J]. J. Mater. Sci. Technol., 2020, 42: 175
|
31 |
Zheng R X , Du J P , Gao S , et al . Transition of dominant deformation mode in bulk polycrystalline pure Mg by ultra-grain refinement down to sub-micrometer [J]. Acta Mater., 2020, 198: 35
|
32 |
Li X X , Xu D S , Yang R . Crystal plasticity finite element method investigation of the high temperature deformation consistency in dual-phase titanium alloy [J]. Acta Metall. Sin., 2019, 55: 928
|
32 |
李学雄, 徐东生, 杨 锐 . 双相钛合金高温变形协调性的CPFEM研究 [J]. 金属学报, 2019, 55: 928
|
33 |
Zhang Y , Chen H , Jia Y F , et al . A modified kinematic hardening model considering hetero-deformation induced hardening for bimodal structure based on crystal plasticity [J]. Int. J. Mech. Sci., 2021, 191: 106068
|
34 |
Joshi S P , Ramesh K T , Han B Q , et al . Modeling the constitutive response of bimodal metals [J]. Metall. Mater. Trans., 2006, 37A: 2397
|
35 |
Yadollahpour M , Hosseini-Toudeshky H . Material properties and failure prediction of ultrafine grained materials with bimodal grain size distribution [J]. Eng. Comput., 2017, 33: 125
|
36 |
Guo X , Dai X Y , Zhu L L , et al . Numerical investigation of fracture behavior of nanostructured Cu with bimodal grain size distribution [J]. Acta. Mech., 2014, 225: 1093
|
37 |
Dai L H , Ling Z , Bai Y L . Size-dependent inelastic behavior of particle-reinforced metal-matrix composites [J]. Compos. Sci. Technol., 2001, 61: 1057
|
38 |
Gao H J , Huang Y G . Taylor-based nonlocal theory of plasticity [J]. Int. J. Solids Struct., 2001, 38: 2615
|
39 |
Gao H J , Huang Y , Nix W D , et al . Mechanism-based strain gradient plasticity—I. Theory [J]. J. Mech. Phys. Solids, 1999, 47: 1239
|
40 |
Huang Y , Qu S , Hwang K C , et al . A conventional theory of mechanism-based strain gradient plasticity [J]. Int. J. Plast., 2004, 20: 753
|
41 |
Shao J C , Xiao B L , Wang Q Z , et al . An enhanced FEM model for particle size dependent flow strengthening and interface damage in particle reinforced metal matrix composites [J]. Compos. Sci. Technol., 2011, 71: 39
|
42 |
Cao J Y , Jin J F , Wang L , et al . Finite-element modeling of particle size effect on mechanical properties of SiCp/Fe composites [J]. IOP Conf. Ser. Mater. Sci. Eng., 2018, 422: 012001
|
43 |
Zhang J F , Zhang X X , Wang Q Z , et al . Simulation of anisotropic load transfer and stress distribution in SiCp/Al composites subjected to tensile loading [J]. Mech. Mater., 2018, 122: 96
|
44 |
Gao X , Zhang X X , Geng L . Strengthening and fracture behaviors in SiCp/Al composites with network particle distribution architecture [J]. Mater. Sci. Eng., 2019, A740-741: 353
|
45 |
Schwaiger R , Moser B , Dao M , et al . Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel [J]. Acta Mater., 2003, 51: 5159
|
46 |
Wang M T , Zong B Y , Wang G . A phase-field model to simulate recrystallization in an AZ31 Mg alloy in comparison of experimental data [J]. J. Mater. Sci. Technol., 2008, 24: 829
|
47 |
Taylor G I . Plastic strain in metals [J]. J. Inst. Met., 1938, 62: 307
|
48 |
Mecking H , Kocks U F . Kinetics of flow and strain-hardening [J]. Acta Metall., 1981, 29: 1865
|
49 |
Nix W D , Gao H J . Indentation size effects in crystalline materials: A law for strain gradient plasticity [J]. J. Mech. Phys. Solids, 1998, 46: 411
|
50 |
Chawla N , Ganesh V V , Wunsch B . Three-dimensional (3D) microstructure visualization and finite element modeling of the mechanical behavior of SiC particle reinforced aluminum composites [J]. Scr. Mater., 2004, 51: 161
|
51 |
Chawla N , Chawla K K . Microstructure-based modeling of the deformation behavior of particle reinforced metal matrix composites [J]. J. Mater. Sci., 2006, 41: 913
|
52 |
Uthaisangsuk V , Prahl U , Bleck W . Micromechanical modelling of damage behaviour of multiphase steels [J]. Comput. Mater. Sci., 2008, 43: 27
|
53 |
Choi K S , Liu W N , Sun X , et al . Microstructure-based constitutive modeling of TRIP steel: Prediction of ductility and failure modes under different loading conditions [J]. Acta Mater., 2009, 57: 2592
|
54 |
Uthaisangsuk V , Prahl U , Bleck W . Modelling of damage and failure in multiphase high strength DP and TRIP steels [J]. Eng. Fract. Mech., 2011, 78: 469
|
55 |
Ayari F , Ayari F , Bayraktar E , et al . Image processing and finite element modelling for analysis of a metal matrix composite [J]. Int. J. Comput. Sci. Iss., 2012, 9: 448
|
56 |
Ramazani A , Mukherjee K , Quade H , et al . Correlation between 2D and 3D flow curve modelling of DP steels using a microstructure-based RVE approach [J]. Mater. Sci. Eng., 2013, A560: 129
|
57 |
Qayyum F , Umar M , Guk S , et al . Effect of the 3rd dimension within the representative volume element (RVE) on damage initiation and propagation during full-phase numerical simulations of single and multi-phase steels [J]. Materials, 2021, 14: 42
|
58 |
Cao J , Zhuang W , Wang S , et al . An integrated crystal plasticity FE system for microforming simulation [J]. J. Multiscale Model., 2009, 1: 107
|
59 |
Zhang P , Karimpour M , Balint D , et al . A controlled poisson voronoi tessellation for grain and cohesive boundary generation applied to crystal plasticity analysis [J]. Comput. Mater. Sci., 2012, 64: 84
|
60 |
Song Y H , Wang M T , Zong Y P , et al . Grain refinement by second phase particles under applied stress in ZK60 Mg alloy with Y through phase field simulation [J]. Materials, 2018, 11: 1903
|
61 |
He R , Wang M T , Zhang X G , et al . Influence of second-phase particles on grain growth in AZ31 magnesium alloy during equal channel angular pressing by phase field simulation [J]. Modell. Simul. Mater. Sci. Eng., 2016, 24: 055017
|
62 |
Han G M , Han Z Q , Luo A A , et al . A phase field model for simulating the precipitation of multi-variant β-Mg17Al12 in Mg-Al-based alloys [J]. Scr. Mater., 2013, 68: 691
|
63 |
Shang S , Guo Z P , Han Z Q . On the kinetics of dendritic sidebranching: A three dimensional phase field study [J]. J. Appl. Phys., 2016, 119: 164305
|
64 |
Cahn J W . On spinodal decomposition [J]. Acta Metall., 1961, 9: 795
|
65 |
Allen S M , Cahn J W . A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening [J]. Acta Metall., 1979, 27: 1085
|
66 |
Fan D , Chen L Q . Computer simulation of grain growth using a continuum field model [J]. Acta Mater., 1997, 45: 611
|
67 |
Li L , Jie W , Wu Y Z , et al . Effect of static annealing on microstructure and texture in extruded Mg-Gd-Y-Zr Alloy [J]. Rare Met. Mater. Eng., 2016, 45: 2263
|
68 |
Verdier M , Groma I , Flandin L , et al . Dislocation densities and stored energy after cold rolling of Al-Mg alloys: Investigations by resistivity and differential scanning calorimetry [J]. Scr. Mater., 1997, 37: 449
|
69 |
Andersson J O , Helander T , Höglund L , et al . Thermo-Calc & DICTRA, computational tools for materials science [J]. Calphad, 2002, 26: 273
|
70 |
Ganeshan S , Shang S L , Wang Y , et al . Effect of alloying elements on the elastic properties of Mg from first-principles calculations [J]. Acta Mater., 2009, 57: 3876
|
71 |
Polk D E , Giessen B C , Gardner F S . State-of-the-art and prospects for magnetic, electronic and mechanical applications of amorphous metals A synopsis of the ONR materials workshop at Northeastern University, Boston, Mass., November 20-21, 1975 [J]. Mater. Sci. Eng., 1976, 23: 309
|
72 |
Kim H S , Estrin Y , Bush M B . Plastic deformation behaviour of fine-grained materials [J]. Acta Mater., 2000, 48: 493
|
73 |
Fu H H , Benson D J , Meyers M A . Analytical and computational description of effect of grain size on yield stress of metals [J]. Acta Mater., 2001, 49: 2567
|
74 |
Li J , Zhao M J , Jin L , et al . Simultaneously improving strength and ductility through laminate structure design in Mg-8.0Gd- 3.0Y-0.5Zr alloys [J]. J. Mater. Sci. Technol., 2021, 71: 195
|
75 |
Warlimont H , Martienssen W . Springer Handbook of Materials Data [M]. 2nd Ed., Switzerland: Springer, 2018: 65
|
76 |
Shang X Q , Zhang H M , Wang L Y , et al . The effect of stress state and strain partition mode on the damage behavior of a Mg-Ca alloy [J]. Int. J. Plast., 2021, 144: 103040
|
77 |
Gao L , Zhou J , Sun Z M , et al . First-principles calculations of the β′-Mg7Gd precipitate in Mg-Gd binary alloys [J]. Chin. Sci. Bull., 2011, 56: 1142
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|