Please wait a minute...
金属学报  2020, Vol. 56 Issue (5): 745-752    DOI: 10.11900/0412.1961.2019.00317
  本期目录 | 过刊浏览 |
激光沉积薄壁结构热力演化的尺寸效应
王霞1,2, 王维1,2(), 杨光2, 王超2, 任宇航2
1.沈阳工业大学机械工程学院 沈阳 110870
2.沈阳航空航天大学机电工程学院 沈阳 110136
Dimensional Effect on Thermo-Mechanical Evolution of Laser Depositing Thin-Walled Structure
WANG Xia1,2, WANG Wei1,2(), YANG Guang2, WANG Chao2, REN Yuhang2
1.School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
2.School of Mechatronics Engineering, Shenyang Aerospace University, Shenyang 110136, China
全文: PDF(2076 KB)   HTML
摘要: 

为研究激光沉积TC4单道薄壁结构热力演化的尺寸效应,采用有限元仿真和实验相结合的方法,分析了薄壁结构长度对温度、应力和基板变形的影响,并通过热电偶测温、基板残余变形验证了模型的可靠性。结果表明,熔池温度随层数循环递增,停光瞬间,试件最高温度急速下降,最低温度以抛物线形式持续上升。长度增加,对熔池极值温度影响不大,但会导致冷却曲线曲率变小,稳定降温速率加快,温度梯度变大。沉积过程中首层应力最大,随层数增加,应力递减,冷却过程中又逐步回升。长度增加,导致首层应力增大,沉积过程中低应力区和冷却过程中高应力区均围绕在薄壁结构附近,其范围扩大,但数值未见增大。沉积过程中基板会产生方向和大小不断变化的纵向翘曲变形,冷却后固定为朝向光源。长度增加,翘曲会更加明显。冷却过程中,基板变形比温度和应力更早达到平衡。

关键词 激光沉积热力演化尺寸效应有限元仿真薄壁结构    
Abstract

To accurately predict and effectively control temperatures, stresses and distortions are key problems existing in laser deposition manufacturing technology. The mechanism of thermo-mechanical evolution during the metal depositing process is not yet clear. In order to study the dimensional effect on thermo-mechanical evolution when TC4 single-pass and thin-walled structures are manufactured by laser deposition, finite element simulations and experiments are combined to explore the influence of the structures' length on temperature, stress and distortion of the substrates. The model reliability is validated by thermocouple temperatures and the residual deformations of substrates. The results show that the temperatures of molten pools increase periodically according to the depositing layers. As soon as the laser is terminated, the maximum temperatures of builds decline at high speed, but the minimum temperatures continue to rise in the form of parabola. When the lengths of thin-walled structures increase, the thermal extremes of molten pools are not affected, but the curvatures of cooling curves diminish, the steady cooling rates accelerate, meanwhile the temperature gradients increase. The initial stresses when depositing the first layer are maximum during manufacturing, the stresses decline progressively with the increasing layer numbers, but recover during cooling. While the lengths expand, stresses of the first layer increase. At the same time both low stress regions during depositing and high stress areas during cooling are enlarged which are around the depositing structures, but the lengths of thin-walled structures appear to have a minimal impact on the stress magnitudes. During deposition, the out-of-plane distortions of the substrates oscillate up and down, after cooling the directions of deformations are fixed towards the light source. The out-of-plane distortions are more obvious as the lengths increase. During cooling the substrates' deformations reach equilibrium earlier than temperatures and stresses.

Key wordslaser deposition    thermo-mechanical evolution    dimensional effect    finite element simulation    thin-walled structure
收稿日期: 2019-09-25     
ZTFLH:  V261.8  
基金资助:国家自然科学基金项目(51975387);国家重点研发计划项目(2016YFB1100504);沈阳航空航天大学航空制造工艺数字化国防重点学科实验室开放基金项目(SHSYS2015006)
通讯作者: 王维     E-mail: wangw1116@sau.edu.cn
Corresponding author: WANG Wei     E-mail: wangw1116@sau.edu.cn
作者简介: 王 霞,女,1975年生,讲师,博士生

引用本文:

王霞, 王维, 杨光, 王超, 任宇航. 激光沉积薄壁结构热力演化的尺寸效应[J]. 金属学报, 2020, 56(5): 745-752.
Xia WANG, Wei WANG, Guang YANG, Chao WANG, Yuhang REN. Dimensional Effect on Thermo-Mechanical Evolution of Laser Depositing Thin-Walled Structure. Acta Metall Sin, 2020, 56(5): 745-752.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00317      或      https://www.ams.org.cn/CN/Y2020/V56/I5/745

图1  试件尺寸和热电偶测温点、位移测量点位置示意图
图2  有限元模型和沉积方式
图3  T1~T5热电偶测量和模拟温度曲线以及薄壁长度不同时试件最高和最低温度曲线
图4  最高温度曲线中沉积段峰值和谷值温度以及最低温度曲线中峰值和终值温度
图5  薄壁长度为20、30和40 mm时第1层结束、第6层结束和冷却100 s时的von Mises 应力分布云图
图6  D1~D3的垂直位移历史曲线
图7  薄壁长度为30 mm时0.25、3.75和15.875 s 变形分布云图
图8  薄壁长度为20、30和40 mm时模拟和测量的残余变形
图9  薄壁长度为40 mm时温度、应力和基板变形历史曲线
1 Lu X F, Lin X, Chiumenti M, et al. Finite element analysis and experimental validation of the thermomechanical behavior in laser solid forming of Ti-6Al-4V [J]. Addit. Manuf., 2018, 21: 30
2 Heigel J C, Michaleris P, Reutzel E W. Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti-6Al-4V [J]. Addit. Manuf., 2015, 5: 9
3 Denlinger E R, Heigel J C, Michaleris P, et al. Effect of inter-layer dwell time on distortion and residual stress in additive manufacturing of titanium and nickel alloys [J]. J. Mater. Process. Technol., 2015, 215: 123
4 Chiumenti M, Lin X, Cervera M, et al. Numerical simulation and experimental calibration of additive manufacturing by blown powder technology. Part I: Thermal analysis [J]. Rapid Prototyp. J., 2017, 23: 448
5 Lindgren L E, Lundbäck A. Approaches in computational welding mechanics applied to additive manufacturing: Review and outlook [J]. Compt. Rend. Méc., 2018, 346: 1033
6 Fallah V, Alimardani M, Corbin S F, et al. Temporal development of melt-pool morphology and clad geometry in laser powder deposition [J]. Comput. Mater. Sci., 2011, 50: 2124
7 Parry L, Ashcroft I A, Wildman R D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation [J]. Addit. Manuf., 2016, 12: 1
8 Özcan A, Kollmannsberger S, Jomo J, et al. Residual stresses in metal deposition modeling: Discretizations of higher order [J]. Comput. Math. Appl., 2019, 78: 2247
9 Mukherjee T, Zhang W, DebRoy T. An improved prediction of residual stresses and distortion in additive manufacturing [J]. Comput. Mater. Sci., 2017, 126: 360
10 Shi L K, Gao S Y, Xi M Z, et al. Finite element simulation for laser direct depositing processes of metallic vertical thin wall Parts I. The simulation for temperature field during depositing processes [J]. Acta Metall. Sin., 2006, 42: 449
10 石力开, 高士友, 席明哲等. 金属直薄壁件激光直接沉积过程的有限元模拟 I. 沉积过程中温度场的模拟 [J]. 金属学报, 2006, 42: 449
11 Shi L K, Gao S Y, Xi M Z, et al. Finite element simulation for laser direct depositing processes of metallic vertical thin wall Parts II. The simulation for thermal stress field during depositing processes [J]. Acta Metall. Sin., 2006, 42: 454
11 石力开, 高士友, 席明哲等. 金属直薄壁件激光直接沉积过程的有限元模拟 Ⅱ. 沉积过程中热应力场的模拟 [J]. 金属学报, 2006, 42: 454
12 Shi L K, Gao S Y, Xi M Z, et al. Finite element simulation for laser direct depositing processes of metallic vertical thin wall Parts III. The analysis for distortion during depositing processes [J]. Acta Metall. Sin., 2006, 42: 459
12 石力开, 高士友, 席明哲等. 金属直薄壁件激光直接沉积过程的有限元模拟 III. 沉积过程中变形的分析 [J]. 金属学报, 2006, 42: 459
13 Gao S Y, Xian S Y, Ji H Z, et al. The analysis on the distortion of subatrate during laser direct depositing processes [J]. J. Plast. Eng., 2007, 14(5): 57
13 高士友, 咸士玉, 纪宏志等. 激光直接沉积过程中基板变形分析 [J]. 塑性工程学报, 2007, 14(5): 57
14 Ma L, Huang W D, Yu J, et al. Parametric finite element model of temperature/stress field evolution by metal laser solid forming [J]. Chin. J. Lasers, 2009, 36: 3226
14 马 良, 黄卫东, 于 君等. 金属激光立体成形热应力场参数化有限元模型 [J]. 中国激光, 2009, 36: 3226
15 Thompson S M, Bian L K, Shamsaei N, et al. An overview of direct laser deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics [J]. Addit. Manuf., 2015, 8: 36
16 Shamsaei N, Yadollahi A, Bian L K, et al. An overview of direct laser deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control [J]. Addit. Manuf., 2015, 8: 12
17 Yang Q C, Zhang P, Cheng L, et al. Finite element modeling and validation of thermomechanical behavior of Ti-6Al-4V in directed energy deposition additive manufacturing [J]. Addit. Manuf., 2016, 12: 169
18 Zhang Y, Zhang J. Finite element simulation and experimental validation of distortion and cracking failure phenomena in direct metal laser sintering fabricated component [J]. Addit. Manuf., 2017, 16: 49
19 Lu X F, Lin X, Chiumenti M, et al. In situ measurements and thermo-mechanical simulation of Ti-6Al-4V laser solid forming processes [J]. Int. J. Mech. Sci., 2019, 153-154: 119
20 Lu X F, Lin X, Chiumenti M, et al. Residual stress and distortion of rectangular and S-shaped Ti-6Al-4V parts by directed energy deposition: Modelling and experimental calibration [J]. Addit. Manuf., 2019, 26: 166
21 Ren K, Chew Y, Fuh J Y H, et al. Thermo-mechanical analyses for optimized path planning in laser aided additive manufacturing processes [J]. Mater. Des., 2019, 162: 80
22 Ahn J, He E, Chen L, et al. Prediction and measurement of residual stresses and distortions in fibre laser welded Ti-6Al-4V considering phase transformation [J]. Mater. Des., 2017, 115: 441
23 Song J, Chew Y X, Bi G J, et al. Numerical and experimental study of laser aided additive manufacturing for melt-pool profile and grain orientation analysis [J]. Mater. Des., 2018, 137: 286
24 Bartlett J L, Croom B P, Burdick J, et al. Revealing mechanisms of residual stress development in additive manufacturing via digital image correlation [J]. Addit. Manuf., 2018, 22: 1
25 Chen Z, Ye H, Xu H Y. Distortion control in a wire-fed electron-beam thin-walled Ti-6Al-4V freeform [J]. J. Mater. Process. Technol., 2018, 258: 286
[1] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[2] 何波, 邢盟, 杨光, 邢飞, 刘祥宇. 成分梯度对激光沉积制造TC4/TC11连接界面组织和性能的影响[J]. 金属学报, 2019, 55(10): 1251-1259.
[3] 张广平, 陈红蕾, 罗雪梅, 张滨. 微纳米尺度金属导电材料热疲劳研究进展[J]. 金属学报, 2018, 54(3): 357-366.
[4] 马也飞, 宋竹满, 张思倩, 陈立佳, 张广平. 小尺度CA6NM马氏体不锈钢样品疲劳性能评价研究[J]. 金属学报, 2018, 54(10): 1359-1367.
[5] 杨蕊,潘艳,陈威,孙巧艳,肖林,孙军. 微尺度Ti-10V-2Fe-3Al单晶压缩变形行为及其微观机制*[J]. 金属学报, 2016, 52(2): 135-142.
[6] 孙军, 张金钰, 吴凯, 刘刚. Cu系纳米金属多层膜微柱体的形变与损伤及其尺寸效应*[J]. 金属学报, 2016, 52(10): 1249-1258.
[7] 黄晓旭. 金属强度的尺寸效应*[J]. 金属学报, 2014, 50(2): 137-140.
[8] 张金钰, 刘刚, 孙军. 纳米金属多层膜的变形与断裂行为及其尺寸效应*[J]. 金属学报, 2014, 50(2): 169-182.
[9] 张金钰 张欣 牛佳佳 刘刚 张国君 孙军. Cu/X(X=Cr, Nb)纳米多层膜力/电学性能的尺度依赖性[J]. 金属学报, 2011, 47(10): 1348-1354.
[10] 尹立孟 杨艳 刘亮岐 张新平. 电子封装微互连焊点力学行为的尺寸效应[J]. 金属学报, 2009, 45(4): 422-427.
[11] 刘志敏; 杜昊; 石南林; 闻立时 . 铝膜电导率尺寸效应对其微波性能的影响[J]. 金属学报, 2008, 44(9): 1099-1104 .
[12] 郭斌; 周健; 单德彬; 王慧敏 . 黄铜箔拉伸屈服强度的尺寸效应[J]. 金属学报, 2008, 44(4): 419-422 .
[13] 黎军顽; 江五贵 . 基于准连续介质法预测薄膜材料纳米硬度和弹性模量[J]. 金属学报, 2007, 43(8): 851-856 .
[14] 张耀; 钟志源; 朱敏 . 脉冲激光沉积制备的HT-LiCoO2薄膜中Li离子表观扩散的研究[J]. 金属学报, 2007, 43(8): 818-822 .
[15] 孙捷; 金鹏; 王占国 . 自组装半导体量子点的电子学性质研究进展[J]. 金属学报, 2005, 41(5): 463-470 .