Please wait a minute...
金属学报  2012, Vol. 48 Issue (1): 107-114    DOI: 10.3724/SP.J.1037.2011.00533
  论文 本期目录 | 过刊浏览 |
预变形对Zr-Sn-Nb合金淬火时效晶粒及析出相的影响
柴林江, 栾佰峰, 陈建伟, 邱日盛, 刘庆
重庆大学材料科学与工程学院, 重庆 400044
EFFECT OF PRE-DEFORMATION ON GRAINS AND PRECIPITATES OF Zr-Sn-Nb ALLOY DURING AGING
CHAI Linjiang, LUAN Baifeng, CHEN Jianwei, QIU Risheng, LIU Qing
College of Materials Science and Engineering, Chongqing University, Chongqing 400044
引用本文:

柴林江 栾佰峰 陈建伟 邱日盛 刘庆. 预变形对Zr-Sn-Nb合金淬火时效晶粒及析出相的影响[J]. 金属学报, 2012, 48(1): 107-114.
, , , , . EFFECT OF PRE-DEFORMATION ON GRAINS AND PRECIPITATES OF Zr-Sn-Nb ALLOY DURING AGING[J]. Acta Metall Sin, 2012, 48(1): 107-114.

全文: PDF(6495 KB)  
摘要: 采用SEM附带的背散射电子通道衬度(ECC)像、二次电子(SE)像及能谱(EDS)分析技术, 研究了β相水淬后预变形处理对Zr-S--Nb合金在时效过程中再结晶和第二相析出的影响规律. 结果表明, 未引入预变形直接时效时所得组织中再结晶晶粒尺寸粗大且形状不规则, 第二相粒子尺寸差异也较大, 其中尺寸大的第二相粒子为含Cu的Zr3Fe, 主要沿原β晶界分布; 预变形后再时效的组织中再结晶晶粒显著细化且尺寸均匀, 第二相粒子尺寸差异减小, 大尺寸的Zr3Fe粒子主要沿α再结晶晶界分布. 无论有无预变形或时效时间长短, 晶粒内部析出相均为弥散分布的小尺寸Zr(Fe, Cr, Nb)2}粒子. 引入预变形会减弱沉淀相沿晶界析出和急剧长大的倾向, 使锆合金的微观组织和第二相分布特征改变.
关键词 锆合金预变形第二相粒子再结晶    
Abstract:Zirconium-based alloys are being used as fuel cladding and structural materials for nuclear reactors since they have a good irradiation stability, corrosion resistance and acceptable mechanical properties in a reactor environment. Recently, more advanced zirconium-based alloys are required for enhanced operating conditions such as an increased burn-up and higher operation temperatures. Therefore, the development of advanced zirconium alloys for a fuel cladding is being progressed in various countries. Among the developed new zirconium alloys, a low Nb containing alloy series designed by China is a group of promising cladding material. For the new alloy system, optimum manufacturing processes are significant factors to improve properties and need urgently to be established. In this work, electron channeling contrast (ECC), secondary electron (SE) imaging and energy dispersive spectroscopy (EDS) analyzing techniques are employed to investigate the effect of pre-deformation following β-quenching on recrystallization and precipitating behavior of a new Zr-Sn-Nb alloy during aging. The results show that remarkable differences exist between the microstructure of specimens with and without pre-deformation prior to aging at the same temperature (650 ℃). Specimens aged without pre-deformation present extremely heterogeneous recrystallized grains that generally own irregular shape. The size discrepancy between the intragranularly fine Zr(Fe, Cr, Nb)2 precipitates and the larger ones, which is Cu-containing Zr3Fe particles and distribute along the conserved prior $\beta$ grain boundaries, are distinct. While for specimens aged following 20% pre-deformation, the recrystallized α-grains are evidently fined and homogenized. The size discrepancy between the two sorts of precipitates decrease as well and the larger ones change to distribute along recrystallized α-grain boundaries. Therefore, the introduction of pre-deformation is able to change markedly the characteristics of microstructure and second phase particles distribution and further be utilized to obtain preferred microstructure.
Key wordszirconium alloy    pre-deformation    second phase particle    recrystallization
收稿日期: 2011-08-23     
ZTFLH: 

TG146.4+14

 
基金资助:

教育部新世纪优秀人才支持计划NCET-08-0606, 中央高校基本科研业务费专项资金CDJZR10130008和CDJXS10132201资助

作者简介: 柴林江, 男, 1986年生, 博士生
[1] Thorvaldsson T, Andersson T, Wilson A, Wardle A. In: Van Swam L F P, Eucken C M eds., Zirconium in the Nuclear Industry: 8th International Symposium, ASTM STP 1023, Philadelphia: ASTM International, 1989: 128

[2] Garzarolli F, Steinberg E, Weidinger H G. In: Van Swam L F P, Eucken C M eds., Zirconium in the Nuclear Industry:

8th International Symposium, ASTM STP 1023, Philadelphia: ASTM International, 1989: 202

[3] Foster J P, Dougherty J, Burke M G, Bates J F, Worcester S. J Nucl Mater, 1990; 173: 164

[4] Garzarolli F, Stehle H, Steinberg E. In: Bradley E R, Sabol G P eds., Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295, West Conshohocken: ASTM International, 1996: 12

[5] Gros J P, Wadier J F. J Nucl Mater, 1990; 172: 85

[6] Zhou B X, Yang X L. Nucl Power Eng, 1997; 18: 511

(周邦新, 杨晓林. 核动力工程, 1997; 18: 511)

[7] Comstock R J, Schoenberger G, Sabol G P. In: Bradley E R, Sabol G P eds., Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295, West Conshohocken: ASTM International, 1996: 710

[8] Nikulina A V, Markelov V A, Peregud M M, Bibilashvili Y, Kotrekhov V A, Lositsky A F, Kuzmenko N V, Shevnin Y P, Shamardin V K, Kobylyansky G P, Novoselov A E. In:

Bradley E R, Sabol G P eds., Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295,

West Conshohocken: ASTM International, 1996: 785

[9] Jeong Y H, Park S Y, Lee M H, Choi B K, Baek J Y, Park J Y, Kim J H, Kim H G. J Nucl Sci Technol, 2006; 43: 977

[10] Zhao W J. Rare Met Lett, 2004; 23: 15

(赵文金. 稀有金属快报, 2004; 23: 15)

[11] Li Z K, Zhou L, Zhang J J, Wang W S, Jin Z H. Rare Met Mater Eng, 2004; 33: 1362

(李中奎, 周廉, 张建军, 王文生, 金志浩. 稀有金属材料与工程, 2004; 33: 1362)

[12] Yan Q S, Liu W Q, Lei M, Li Q, Yao M Y, Zhou B X. Rare Met Mater Eng, 2007; 36: 104

(严青松, 刘文庆, 雷鸣, 李强, 姚美意, 周邦新. 稀有金属材料与工程, 2007; 36: 104)

[13] Guo X C, Luan B F, Chen J W, Zhou J, Zhang X Y, Li Z K, Liu Q. Rare Met Mater Eng, 2011; 5: 813

(过锡川, 栾佰峰, 陈建伟, 周军, 张喜燕, 李中奎, 刘 \ \ 庆. 稀有金属材料与工程, 2011; 5: 813)

[14] Waterloo G, Hansen V, Gjφnnes J, Skjervold S R. Mater Sci Eng, 2001; A303: 226

[15] Deschamps A, Livet F, Br´echet Y. Acta Mater, 1998; 47: 281

[16] Liu P, Kang B X, Cao X G, Huang J L, Yen B, Gu H C. Mater Sci Eng, 1999; A265: 262

[17] Song Z Y, Sun Q Y, Xiao L, Sun J, Ge P. Rare Met Mater Eng, 2010; 39: 791

(宋振亚, 孙巧艳, 肖 林, 孙 军, 葛鹏. 稀有金属材料与工程, 2010; 39: 791)

[18] Yuan Z X, Song S H, Wang Y H, Liu J, Guo A M. Mater Lett, 2005; 59: 2048

[19] Kim J M, Jeong Y H. J Nucl Mater, 1999; 275: 74

[20] Xue X Y, Song Q Z, Liu J Z, Li P Z. Rare Met Mater Eng, 1998; 27: 302

(薛祥义, 宋启忠, 刘建章, 李佩志. 稀有金属材料与工程, 1998; 27: 302)

[21] Liu P, Ornhagen C, Nilsson J O. Scr Mater, 1998; 38: 775.

[22] Holt R A. J Nucl Mater, 1970; 35: 322

[23] Okvist G, K¨allstr¨om K. J Nucl Mater, 1970; 35: 316

[24] Woo O T, Tangri K. J Nucl Mater, 1979; 79: 82

[25] Jeong Y H, Rheem K S, Choi C S, Kim Y S. J Nucl Sci Technol, 1993; 30: 154

[26] Hong H S, Kim S J, Lee K S. J Nucl Mater, 1999; 265:108

[27] Yao M Y, Zhang Y, Li S L, Zhang X, Zhou J, Zhou B X. Acta Metall Sin, 2011; 47: 872

(姚美意, 张宇, 李士炉, 张 欣, 周军, 周邦新. 金属学报, 2011; 47: 872)

[28] Garzarolli F, Goll W, Seibold A, Ray I. In: Bradley E R, Sabol G P eds., Zirconium in the Nuclear Industry: 11th

International Symposium, ASTM STP 1295, West Conshohocken: ASTM International, 1996: 541

[29] Ruhmann H, Manzel R, Sell H, Charquet D. In: Bradley E R, Sabol G P eds., Zirconium in the Nuclear Industry:

11th International Symposium, ASTM STP 1295, West Conshohocken: ASTM International, 1996: 865

[30] Eucken C, Finden E T, Trapp–Pritsching S, Weidinger H G. In: Van Swam L F P, Eucken C M eds., Zirconium in the Nuclear Industry: 8th International Symposium,

ASTM STP 1023, Philadelphia: ASTM International, 1989: 113

[31] Pan J S, Tong J M, Tian M B. The Fundamental of Materials Science. Beijing: Tsinghua Unviersity Press, 1998: 567

(潘金生, 仝健民, 田民波. 材料科学基础. 北京: 清华大学出版社, 1998: 567)

[32] Loucif K, Borrelly R, Merle P. J Nucl Mater, 1994; 210: 84

[33] Maussner G, Steinberg E, Tenckhoff E. In: Van Swam L F P, Adamson R B eds., Zirconium in the Nuclear Industry: 7th International Symposium, ASTM STP 939, Philadelphia:

ASTM International, 1987: 307

[34] Rollett A D, Srolovitz D J, Doherty R D, Anderson M P. Acta Metall, 1989; 37: 627

[35] Humphreys F J, Hatherly M. Recrystallisation and Related Annealing Phenomena. 2nd Ed., Oxford: Elsevier Ltd, 2004: 109
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[4] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[5] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[6] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[7] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[8] 任平, 陈兴品, 王存宇, 俞峰, 曹文全. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58(6): 771-780.
[9] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[10] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[11] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[12] 姜巨福, 张逸浩, 刘英泽, 王迎, 肖冠菲, 张颖. RAP法制备AlSi7Mg合金半固态坯料研究[J]. 金属学报, 2021, 57(6): 703-716.
[13] 刘曼, 胡海江, 田俊羽, 徐光. 变形对超高强贝氏体钢组织和力学性能的影响[J]. 金属学报, 2021, 57(6): 749-756.
[14] 戴进财, 闵小华, 周克松, 姚凯, 王伟强. 预变形与等温时效耦合作用下Ti-10Mo-1Fe/3Fe层状合金的力学性能[J]. 金属学报, 2021, 57(6): 767-779.
[15] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.