Please wait a minute...
金属学报  2012, Vol. 48 Issue (1): 11-15    DOI: 10.3724/SP.J.1037.2011.00269
  论文 本期目录 | 过刊浏览 |
Tb0.3Dy0.7Fe1.95-xTix (x=0, 0.03, 0.06, 0.09) 合金的微观组织与磁致伸缩性能
李晓诚1), 丁雨田1, 2),  胡勇1, 2)
1) 兰州理工大学甘肃省有色金属新材料省部共建国家重点实验室, 兰州 730050
2) 兰州理工大学温州泵阀工程研究院, 温州 325105
MICROSTRUCTURE AND MAGNETOSTRICTION OF THE Tb0.3Dy0.7Fe1.95-xTix (x=0, 0.03, 0.06, 0.09) ALLOYS
LI Xiaocheng1),  DING Yutian1, 2), HU Yong1, 2)
1) State Key Laboratory of Gansu Advanced Nonferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050
2) Wenzhou Pump & Valve Engineering Research Institute, Lanzhou University of Technology, Wenzhou 325105
引用本文:

李晓诚 丁雨田 胡勇. Tb0.3Dy0.7Fe1.95-xTix (x=0, 0.03, 0.06, 0.09) 合金的微观组织与磁致伸缩性能[J]. 金属学报, 2012, 48(1): 11-15.
, , . MICROSTRUCTURE AND MAGNETOSTRICTION OF THE Tb0.3Dy0.7Fe1.95-xTix (x=0, 0.03, 0.06, 0.09) ALLOYS[J]. Acta Metall Sin, 2012, 48(1): 11-15.

全文: PDF(1818 KB)  
摘要: 利用高真空非自耗电弧炉制备了Tb0.3Dy0.7Fe1.95-xTix (x=0, 0.03, 0.06, 0.09) 合金, 系统研究了不同 Ti含量Tb0.3Dy0.7Fe1.95-xTix合金的晶体结构、微观组织、磁致伸缩性能及它们之间的关系. 结果表明: 添加 Ti后的Tb0.3Dy0.7Fe1.95-xTix合金基体相仍为MgCu2型Laves相结构, Ti取代了 Tb0.3Dy0.7Fe1.95合金中比其自身半径大的稀土原子Tb和Dy而使晶格常数减小. 添加Ti后, 初生相TiFe2的形成使得凝固液体中富含R (R=Tb, Dy)从而抑制了有害相RFe3的生成, Ti在基体相RFe2中和富R相中都可溶解, 分别形成了(R, Ti)Fe2基体相和富(R, Ti)相. Ti的添加量对磁致伸缩性能的影响很大, 当x=0.03时, Ti的添加使磁致伸缩性能较 Tb0.3Dy0.7Fe1.95母合金提高幅度最大, 但当x=0.09时, 由于顺磁相TiFe2和富(R, Ti)相的析出对磁致伸缩性能不利, 但相对于Tb0.3Dy0.7Fe1.95母合金也有少量提高.
关键词 Tb-Dy-Fe合金磁致伸缩Ti添加显微组织Laves相    
Abstract:The Tb0.3Dy0.7Fe1.95-xTix (x=0, 0.03, 0.06, 0.09) alloys were prepared by high--vacuum non-consumable arc melting furnace. The crystal structure, microstructure, magnetostriction and their relationships of the Tb0.3Dy0.7Fe1.95-xTix (x=0, 0.03, 0.06, 0.09) alloys were systematically studied. The results demonstrated that the matrix phase of the Tb0.3Dy0.7Fe1.95-xTix (x=0.03, 0.06, 0.09) alloys consisted predominantly of the Laves phase with MgCu2 structure. After Ti addition, the lattice parameter of the Laves phase in the alloys was decreased by substituting rare earth elements Tb and Dy, and the formation of the TiFe2 phase as the primary phase made the solidifying liquid become rich in rare earths and suppressed the formation of the deleterious RFe3 (R=Tb and Dy) phase. Ti was found to be soluble in the matrix RFe2 and R-rich phases and formed the matrix (R, Ti)Fe2 and (R, Ti)-rich phases. The concentration of Ti affected the magnetostriction significantly. The improvement in magnetostriction was maximum for the Ti-added alloys with a low concentration of the Ti (x=0.03) as compared to the parent alloy Tb0.3Dy0.7Fe1.95. However, the decrease in magnetostriction at a higher concentration (x=0.09) was due to the formation of paramagnetic phases TiFe2 and (R, Ti)-rich. Whereas the magnetostriction had little improvement as compared to the parent alloy\linebreak Tb0.3Dy0.7Fe1.95.
Key wordsTb-Dy-Fe alloy    magnetostriction    Ti addition    microstructure    Laves phase
收稿日期: 2011-04-25     
ZTFLH: 

TG113

 
基金资助:

国家自然科学基金项目11004091, 浙江省自然科学基金项目Y4090219和甘肃省自然科学基金项目0916RJZA025资助

作者简介: 李晓诚, 男, 1983年生, 硕士生
[1] Clark A E. Ferromagnetic Materials. Vol.1 Amsterdam: North–Holland, 1980: 531

[2] Clark A E, Abbundi R, Gilmor W R. IEEE Trans Magn, 1978; 14: 542

[3] Clark A E, Teter J P, McMasters O D. J Appl Phys, 1988; 63: 3910

[4] Branwood A, Janio A L, Pierey A R. J Appl Phys, 1987; 61: 3796

[5] Teter J P, Clark A E, McMasters O D. J Appl Phys, 1987; 61: 3787

[6] Jiles D C. Acta Mater, 2003; 51: 5907

[7] Greenough R D, Shulze M P, Jenner A G I, Wilkinson A J. IEEE Trans Magn, 1991; 27: 5346

[8] Jiles D C. J Appl Phys, 1994; 27: 1

[9] Zhang T L, Jiang C B, Zhang H, Xu H B. Smart Mater Struct, 2004; 13: 473

[10] Zhang M C, Gao X X, Zhou S Z, Shi Z H. J Alloys Compd, 2004; 381: 226

[11] Clark A E, Wun–Fogle M, Restorff J B, Lograsso T A, Cullen J R. IEEE Trans Magn, 2001; 37: 2678

[12] Ma T Y, Jiang C B, Xiao F, Xu H B. J Alloys Compd, 2006; 414: 276

[13] Liu H Y, Li Y X, Meng F B. J Alloys Compd, 2006; 408: 133

[14] Palit M, Pandian S, Balamuralikrishnan R, Singh A K, Das N, Chandrasekaran V, Markandeyulu G. J Appl Phys, 2006; 100: 074913

[15] Clark A E, Teter J P, Wun–Fogle M. J Appl Phys, 1991; 69: 5771

[16] Teter J P, Clark A E, Wun–Fogle M. IEEE Trans Magn, 1990; 26: 1748

[17] Zhou S Z, Gao X X, Zhang M C, Zhao Q, Shi Z H. J Mater Sci Technol, 2000; 16: 175

[18] Zhao Y, Jiang C B, Zhang H, Xu H B. J Alloys Compd, 2003; 354: 263

[19] Li K S, Xu J, Yang H C, Yuan Y Q, Yu D B, Ying Q M, Zhang S G. J Alloys Compd, 2004; 43: 8032

[20] Wang B W, Wu C H, Chuang Y C, Jin X M, Li J Y. J Alloys Compd, 1996; 237: 58

[21] Shi Y G, Tang S L, Yu J Y, Zhai L, Zhang X K, Du YW, Yang C P. J Appl Phys, 2009; 105: 07A925

[22] Pandian S, Chandrasekaran V, Markandeyulu G, Iyer K J L, Rama Rao K V S. J Appl Phys, 2002; 92: 6082

[23] Wang BW, Wu C H, Deng W, Tang S L, Jin X M, Chuang Y C, Li J Y. J Appl Phys, 1996; 79: 2587

[24] Guo H Q, Yang H Y, Shen B G, Yang L Y, Li R Q. J Alloys Compd, 1990; 190: 255

[25] Cui Y, Jiang C B, Xu H B. Acta Metall Sin, 2011; 47: 214

(崔 跃, 蒋成保, 徐惠彬. 金属学报, 2011; 47: 214)

[26] Westwood P, Abell J S. J Appl Phys, 1990; 67: 998

[27] Chelvane J A, Palit M, Basumatary H, Pandian S, Chandrasekaran V. Scr Mater, 2009; 61: 548

[28] Mei W, Okane T, Umeda T. J Alloys Compd, 1997; 248: 132
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[7] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[8] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[9] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[10] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[11] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[12] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[13] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[14] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[15] 温冬辉, 姜贝贝, 王清, 李相伟, 张鹏, 张书彦. MoNb改性FeCrAl不锈钢高温组织演变和力学性能[J]. 金属学报, 2022, 58(7): 883-894.