Please wait a minute...
金属学报  2010, Vol. 46 Issue (2): 195-200    DOI: 10.3724/SP.J.1037.2009.00521
  论文 本期目录 | 过刊浏览 |
用可变长度热源模拟奥氏体不锈钢多层焊对接接头的焊接残余应力
邓德安1;清岛祥一2
1.重庆大学材料科学与工程学院; 重庆 400045
2.计算力学研究中心技术开发部; 东京 142--0041; 日本
NUMERICAL SIMULATION OF WELDING RESIDUAL STRESSES IN A MULTI–PASS BUTT–WELDED JOINT OF AUSTENITIC STAINLESS STEEL USING VARIABLE LENGTH HEAT SOURCE
DENG De’an1;KIYOSHIMA Shoichi2
1.College of Materials Science & Engineering; Chongqing University; Chongqing 400045
2.Department of Technical Development; Research Center of Computational Mechanics; Inc.; Tokyo 142–0041; Japan
引用本文:

邓德安 清岛祥一. 用可变长度热源模拟奥氏体不锈钢多层焊对接接头的焊接残余应力[J]. 金属学报, 2010, 46(2): 195-200.
, . NUMERICAL SIMULATION OF WELDING RESIDUAL STRESSES IN A MULTI–PASS BUTT–WELDED JOINT OF AUSTENITIC STAINLESS STEEL USING VARIABLE LENGTH HEAT SOURCE[J]. Acta Metall Sin, 2010, 46(2): 195-200.

全文: PDF(1165 KB)  
摘要: 

采用可变长度热源模型对奥氏体不锈钢平板多层焊对接接头的残余应力进行了数值模拟, 同时也用实验方法测量了平板对接接 头上下表面的残余应力. 通过比较由热弹塑性有限元计算得到的残余应力与由电阻应变片法测量得到的实验结果得知, 采用该模型对多层焊对接接头残余应力的数值模拟, 不仅可以大大缩短计算时间, 也可以得到较高的计算精度.

关键词 焊接残余应力 数值模拟 奥氏体不锈钢 可变长度热源    
Abstract

Recent discoveries of stress corrosion cracking at welded joints in pressurized water reactors and boiling water reactors have raised wide concerns about the safety and integrity of plant components. It has been recognized that residual stress and applied stress on their surfaces largely increase the expanding risk of initial stress corrosion cracking. Therefore, it is very important to investigate the welding residual stress in welded joints. It is very expensive and time–consuming to measure the residual stress, and sometime is impossible. As an alternative approach a computational procedure on the basis of finite element method is effective in solving non–linear problems such as thermal and mechanical nonlinearity in a welding process. Accurately simulating welding residual stress not only needs generally a long computational time, but also strongly depends on the analyst’s experience and know–how which is a main hindrane for the welding process simulation. Therefore, it is an urgent task to develop a time–effective numerical simulation procedure to calculate welding temperature field and residual stress distribution. In this study, a new method on the basis of the vaiable length heat souce was developed to simulate the welding residual stress in a multi–pass butt–welded joint of austenitic stainless steel. Meanwhile, the experiment was carried out to obtain the welding residual stress in the utt–welded joint. Comparing the simulated with experimental results, it was found that this method could not only save a large amount of computational time but also provide a highly accurate numerical result for the residual stress in multi–pass butt–welded joints.

Key wordswelding residual stress    numerical simulation    austenitic stainless steel    variable length heat source
收稿日期: 2009-07-30     
作者简介: 邓德安, 男, 1968年生, 教授, 博士

[1] Deng D, Murakawa H, Liang W. Comput Mater Sci, 2008; 42: 234
[2] Ogawa K, Deng D, Kiyoshima S, Yanagida N, Saito K. Comput Mater Sci, 2009; 45: 1031
[3] Hamada I, Yamauchi K. Nucl Eng Des, 2002; 214: 205
[4] KoshiishiM, Fujimori H, Okada M, Hirano A. Hitachi Rev, 2009; 58: 88
[5] Ueda Y, Yamakawa T. JWRI Trans, 1971; 2: 90
[6] Deng D, Murakawa H. Comput Mater Sci, 2008; 43: 681
[7] Deng D. Mater Des, 2009; 30: 359
[8] Deng D. PhD Thesis, Osaka University, 2002
[9] Hong J K, Tsai C L, Dong P. Weld J, 1998; 77: 372s
[10] Nishigawa H, Serizawa H, Murakawa H. Sci Technol Weld Join, 2007; 12: 147
[11] Ogawa K, Yanagida N, Saito K. Proc PVP2008, 2008 ASME Pressure Vessels and Piping Division Conference, July 27–31, 2008, Chicago, Illinois, USA, PVP2008–61321, CD–ROM
[12] Kiyoshima S, Deng D, Ogawa K, Yanagida N, Satio K. Comput Mater Sci, 2009; 46: 987
[13] Kiyoshima S. Quick Welder User’s Manual. Research Center of Computational Mechanics Inc., Tokyo, 2005: 23
(清岛祥一. Quick Welderユ一ザマニュアル. 计算力学研究センタ一, 东京, 2005: 23)
[14] Deng D, Murakawa H. Comput Mater Sci, 2006; 37: 269
[15] Terasaki T, Kitamura T, Akiyama T, Nakatani M. Sci Tech Weld Join, 2005; 10: 701
[16] Deng D, Murakwa H. Comput Mater Sci, 2006; 37: 209
[17] Leggatt R H. Int J Press Vessels Piping, 2008; 85: 144

[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[3] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[4] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[6] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[7] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[8] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[9] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[10] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[11] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[12] 曹超, 蒋成洋, 鲁金涛, 陈明辉, 耿树江, 王福会. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为[J]. 金属学报, 2022, 58(1): 67-74.
[13] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[14] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[15] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.