Please wait a minute...
金属学报  2010, Vol. 46 Issue (2): 189-194    DOI: 10.3724/SP.J.1037.2009.00198
  论文 本期目录 | 过刊浏览 |
夹具拘束模型在焊接过程有限元分析中的建立及应用
张增磊1;史清宇1;鄢东洋1;蔡志鹏1;李德成2
1.清华大学机械工程系; 北京 100084
2.中国运载火箭技术研究院首都航天机械公司; 北京 100076
ESTABLISHMENT AND APPLICATION OF FIXTURE CONSTRAINT MODELS IN FINITE ELEMENT ANALYSIS OF WELDING PROCESS
ZHANG Zenglei1; SHI Qingyu1; YAN Dongyang1; CAI Zhipeng1;LI Decheng2
1.Department of Mechanical Engineering; Tsinghua University; Beijing 100084
2.China Academy of Launch Vehicle Technology; Capital Aerospace Machinery Corporation; Beijing 100076
引用本文:

张增磊 史清宇 鄢东洋 蔡志鹏 李德成. 夹具拘束模型在焊接过程有限元分析中的建立及应用[J]. 金属学报, 2010, 46(2): 189-194.
, , , , . ESTABLISHMENT AND APPLICATION OF FIXTURE CONSTRAINT MODELS IN FINITE ELEMENT ANALYSIS OF WELDING PROCESS[J]. Acta Metall Sin, 2010, 46(2): 189-194.

全文: PDF(1819 KB)  
摘要: 

夹具及垫板的拘束作用对被焊平板试样残余应力与变形的演变历程具有重要影响.将夹具和垫板作为弹塑性体包含到焊接数值 模拟模型中,采用4种模型模拟夹具及垫板与被焊平板试样之间的相互作用,能够提高焊接数值模拟研究方法的科学性和准确性. 数值 模拟结果表明,夹具拘束作用的不同处理方式对平板试样焊后残余应力分布与变形趋势有重要影响.不同拘束条件下的平板试样残余变 形模拟结果,与平板试样在自由状态下和夹具夹持状态下焊接实验获得的变形趋势均一致.在焊接过程初期阶段, 平板试样上下表面的横向 应力分布差异,对决定平板试样的残余变形趋势有重要影响.

关键词 焊接 数值模拟 夹具拘束 接触算法 横向应力    
Abstract

The mechanical interaction between welded panel and fixture has a remarkable influence on the distribution of weld–induced residual stress and distortion. Unfortunately, the influence of fixture is not generally included in conventional numerical simulations of welding process. In the present study, it is proposed that the numerical models in which the mechanical interaction between welded panel and fixture is considered as contact pair in the finite element analysis (FEA) of welding process. This could make the FEA of welding process more scientific and accurate. The fixture constraint plays an important role in accurate modeling of welding process. In the simulations, various mechanical constraint boundary conditions in welding process were thought about to establish the relationships of the normal and tangential mechanical interactions between welded panel and fixture. In Free model, the fixture restraint was not considered. In Mech model, the displacements of nodes where welded panel contacted with fixture were restricted in x, y, z directions. Hard model and Tabular model were contact models which included the fixture. In the normal direction, once welded panel and fixture were in contact, the transmitted contact pressure could be infinite in Hard model. While data pairs of contact pressure vs over–closure or clearance were specified to define a piecewise–linear relationship in the normal direction in Tabular model. A penalty friction coefficient of 0.3 was applied in tangential direction in both Hard and Tabular models. Fixture and welded panel were separated and the contact relationships were removed after the welding process in both Hard and Tabular models. The simulation results of contact models including fixture were more accurate, compared to models containing only welded panel with rigid retrictions. The distortiomode of welded panels under different fixture constrait conditions corresponded well with xperimental results. The differences between the distributions of transverse sresses on top and bottom surfaces f welded panel at the beginning of welding process had a crucial influence on the distortion mode f welded panel.

Key wordswelding    numerical simulation    fixture constraint    contact algorithm    transverse stress
收稿日期: 2009-03-30     
基金资助:

国家高技术研究发展计划资助项目2006AA04Z139

作者简介: 张增磊, 男, 1985年生, 硕士

[1] Dong P. Sci Technol Weld Joining, 2005; 10: 389
[2] Liu C, Zhang J X. Sci Technol Weld Joining, 2009; 14: 26
[3] Preston R V, Shercliff H R, WitherP J, Smith S. Acta Mater, 2004; 52: 4973
[4] Deng D, Murakawa H. Comput Mater Sci, 2008; 43: 591
[5] Li T, Shi Q Y, Li H K. Sci Technol Weld Joining, 2007; 12: 664
[6] Yang J G, Li J, Liu X S, Fang H Y. China Weld, 2008; 17: 39
[7] Tian X T. Weld Structure. Beijing: China Machine Press, 1995: 10
(田锡唐. 焊接结构. 北京: 机械工业出版社, 1995: 10)
[8] Preston R V, Shercliff H R, Withers P J, Smith S D. Sci Technol Weld Joining, 2003; 8: 10
[9] Schmidt H, Hattel J. Modell Simul Mater Sci Eng, 2005; 13: 77
[10] Abid M, Siddique M. Modell Simul Mater Sci Eng, 2005; 13: 919
[11] Zhang L, Silvanus J, Li H K, Shi Q Y. Sci Technol Weld Joining, 2008; 13: 422
[12] Zhang G D, Zhou C Y. Acta Metall Sin, 2008; 44: 848
(张国栋, 周昌玉. 金属学报, 2008; 44: 848)
[13] Yu S R, Fan D, Xiong J H. Trans Chin Weld Inst, 2008; 29: 25
(余淑荣, 樊 丁, 熊进辉. 焊接学报, 2008; 29: 25)
[14] Yan D Y, Si Q Y, Wu A P, Silvanus J, Liu Y, Zhang Z L. Acta Metall Sin, 2009; 45: 183
(鄢东洋, 史清宇, 吴爱萍, Silvanus J, 刘园, 张增磊. 金属学报, 2009; 45: 183)
[15] Nishikawa H, Serizawa H, Murakawa H. Sci Technol Weld Joining, 2007; 12: 147
[16] Zhang S L, Ren S Z. A Concise Handbook of Aluminum Alloy. 2nd Ed., Shanghai: Shanghai Scientific and Technological Literature Press, 2006: 9
(张士林, 任颂赞. 简明铝合金手册(第2版). 上海: 上海科学技术文献出版社, 2006: 9)
[17] Hibbitt, Karlsson & Sorensen, Inc.. ABAQUS/Standard User’s Manuals. Vol.3, Version 6.3, 2003: 120

[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[5] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[6] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[7] 陈华斌, 陈善本. 复杂场景下的焊接智能制造中的信息感知与控制方法[J]. 金属学报, 2022, 58(4): 541-550.
[8] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[9] 朱东明, 何江里, 史根豪, 王青峰. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响[J]. 金属学报, 2022, 58(12): 1581-1588.
[10] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[11] 王聪, 张进. 埋弧焊中焊剂对焊缝金属成分调控的研究进展[J]. 金属学报, 2021, 57(9): 1126-1140.
[12] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[13] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[14] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[15] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.