Please wait a minute...
金属学报  2010, Vol. 46 Issue (2): 201-205    DOI: 10.3724/SP.J.1037.2009.00538
  论文 本期目录 | 过刊浏览 |
掺磷四面体非晶碳薄膜的电学性能
刘爱萍1;2;朱嘉琦2;唐为华1;李超荣1
1. 先进纺织材料与制备技术教育部重点实验室(浙江理工大学); 杭州 310018
2. 哈尔滨工业大学复合材料研究所; 哈尔滨 150080
ELECTRICAL PROPERTIES OF PHOSPHORUS INCORPORATED TETRAHEDRAL AMORPHOUS CARBON FILMS
LIU Aiping 1;2; ZHU Jiaqi 2; TANG Weihua 1; LI Chaorong 1
1. Key Laboratory of Advanced Textile Materials and Manufacturing Technology (Zhejiang Sci–Tech University); Ministry of Education; Hangzhou 310018
2. Center for Composite Materials; Harbin Institute of Technology; Harbin 150080
引用本文:

刘爱萍 朱嘉琦 唐为华 李超荣. 掺磷四面体非晶碳薄膜的电学性能[J]. 金属学报, 2010, 46(2): 201-205.
, , , . ELECTRICAL PROPERTIES OF PHOSPHORUS INCORPORATED TETRAHEDRAL AMORPHOUS CARBON FILMS[J]. Acta Metall Sin, 2010, 46(2): 201-205.

全文: PDF(522 KB)  
摘要: 

采用过滤阴极真空电弧技术以PH3为掺杂源, 施加0-200 V基底负偏压, 制备了掺磷四面体非晶碳(ta-C∶P)薄膜. 利用X射线光电子能谱(XPS)和Raman光谱研究ta-C∶P薄膜的微观结构,通过测定变温电导率和电流-电压曲线, 考察ta-C∶P薄膜的导电行为. 结果表明, 磷掺入增加了薄膜中sp2杂化碳原子含量和定域电子π/π*态的数量, 提高了薄膜的导电能力, 且以-80 V得到的ta-C∶P薄膜导电 性能最好. 在293-573 K范围内ta-C∶P薄膜中的载流子表现出跳跃式传导和热激活传导两种导电机制. 电流--电压实验证明ta-C∶P薄膜为n型半导体材料.

关键词 掺磷 四面体非晶碳 基底偏压 电导率 导电机制    
Abstract

Great attention has been given to diamond–like carbon (DLC) or tetrahedral amorphous carbon (ta–C) films due to their potential applications in electronic devices as semiconductor materials. The controlled variation of electrical conductivity through doping is of primary importance. Active phosphorus element could be introduced into ta–C films to achieve n–type doping and the resulted films show potential applications as photovoltaic solar cells, semiconductor field emitters or biomedical coatings. However, an inconsistency of doping effect and graphitization of the bonding still exists in the role of phosphorus atoms in carbon films. A detailed study on the conduction mechanism related to the structural changes should be attempted to further understand the conductive behavior of the films. Based on this purpose, phosphorus incorporated tetrahedral amorphous carbon (ta–C∶P) films were deposited using filtered cathodic vacuum arc technology with PH3 as a dopant surce under negative substrate biases of 0—200 V. The structural characteristics of ta–C∶P films were investigated by X–ray photoelectron spectroscopy (XPS) and Raman spectroscopy, and the electrical behaviors of the films ere examined by measuring electrical conductivity at the temperature range of
293—573 K and current–voltage curves. Results indicate that phosphorus implantation enhances the contents of sp2 sites in ta–C films and the numbers of localized electronic π and π* states as hopping sites, and improves the conductive ability of the films. ta–C∶P film obtained at −80 V shows the best conductive property. The carriers of ta–C∶P films represent the hopping conduction in localized band tail states and the thermally activated conduction in extended states in the temperament range of 293—573 K. The results of current–voltage curves indicate that ta–C∶P films are n–typsmiconuctor mateials.

Key wordsphosphorus incorporation    tetrahedral amorphos carbon    substrate bias    electrical conductivity    conduction mechanism
收稿日期: 2009-08-17     
基金资助:

国家自然科学基金项目50902123和浙江省教育厅科研项目Y200806012资助

作者简介: 刘爱萍, 女, 1979年生, 讲师, 博士

[1] Robertson J. Mater Sci Eng, 2002; R37: 129
[2] Shum P W, Zhou Z F, Li K Y. Wear, 2004; 256: 362
[3] Kim H G, Ahn S H, Kim J G, Park S J, Lee K R. Diamond Relat Mater, 2005; 14: 35
[4] Ma W J, Ruys A J, Mason R S, Martin P J, Bendavid A, Liu Z W, Ionescu M, Zreiqat H. Biomaterials, 2007; 28:1620
[5] Ferrari A C, Kleinsorge B, Morrison N A, Hart A, Stolojan V, Robertson J. J Appl Phys, 1999; 85: 7191
[6] Tay B K, Shi X, Liu E, Lau S P, Cheah L K, Sun Z, Shi J. Surf Coat Technol, 1999; 120–121: 448
[7] Tian X M, Rusop M, Hayashi Y, Soga T, Jimbo T, Umeno M. Sol Energ Mater Sol, 2003; 77C: 105
[8] Veerasamy V S, Yuan J, Jmaratunga G A, Milne W I, Gilkes K W R, Weiler M, Brown L M. Phys Rev, 1993; 48B: 17954
[9] Liu A P, Wu H P, Zhu J Q, Han J C, Niu L. Diamond Relat Mater, 2008; 17: 1927
[10] Kim H G, Ahn S H, Kim J G, Park S J, Lee K R. Thin Solid Films, 2005; 482: 299
[11] Veerasamy V S, Amaratunga G A J, Davis C A, Timbs A E, Milne W I, McKenzie D R. J Phys Condens Matter, 1993; 5: Ll69
[12] Rusop M, Soga T, Jimbo T. Sol Energ Mater Sol, 2006; 90C: 291
[13] Yamamoto Y, Konno H. Bull Chem Soc Jpn, 1986; 59: 1327
[14] Ferrari A, Robertson J. Phys Rev, 2000; 61B: 14095
[15] Liu A P, Zhu J Q, Han J C, Wu H P, Jia Z C. Appl Surf Sci, 2007; 253: 9124
[16] Cohen M H, Fritzsche H, Ovshinsky S R. Phys Rev Lett, 1969; 22: 1065
[17] Davis E A, Mott N F. Philos Mag, 1970; 22, 903
[18] Shi X, Fu H, Shi J R, Cheah L K, Tay B K, Hui P. J Phys Condens Matter, 1998; 10: 9293
[19] Mott N F. Philos Mag, 1969; 19: 835
[20] Godet C. Diamond Relat Mater, 2003; 12: 159

[1] 李斗, 徐长江, 李旭光, 李双明, 钟宏. La掺杂PCeyFe3CoSb12 热电材料及涂层的热电性能[J]. 金属学报, 2023, 59(2): 237-247.
[2] 崔洋, 李寿航, 应韬, 鲍华, 曾小勤. 基于第一性原理的金属导热性能研究[J]. 金属学报, 2021, 57(3): 375-384.
[3] 宋贵宏,李贵鹏,刘倩男,杜昊,胡方. 溅射沉积Mg2(Sn, Si)薄膜组织结构与导电性能[J]. 金属学报, 2019, 55(11): 1469-1476.
[4] 厉英,丁玉石,崔绍刚,王常珍. 掺杂Sc的CaZrO3的制备及电学性能[J]. 金属学报, 2012, 48(5): 575-578.
[5] 宋鲁男 刘嘉斌 黄六一 曾跃武 孟亮. 强变形对Cu-Cr合金组织性能的影响[J]. 金属学报, 2012, 48(12): 1459-1466.
[6] 李贵茂 王恩刚 张林 左小伟 赫冀成. 强磁场对Cu-25%Ag合金析出相及性能的影响[J]. 金属学报, 2010, 46(9): 1128-1132.
[7] 刘志敏; 杜昊; 石南林; 闻立时 . 铝膜电导率尺寸效应对其微波性能的影响[J]. 金属学报, 2008, 44(9): 1099-1104 .
[8] 曲文生; 张功; 楼琅洪; 董加胜; 杨柯 . NiSO4和NaCl含量对电镀Ni溶液分散能力和Ni沉积层的影响[J]. 金属学报, 2008, 44(3): 341-345 .
[9] 张雷; 孟亮 . 应变程度对Cu-12%Ag合金纤维相形成及导电性能的影响[J]. 金属学报, 2005, 41(3): 255-259 .
[10] 颜芳; 孟亮; 张雷 . 热处理温度对纤维相强化Cu--12Ag合金组织性能的影响[J]. 金属学报, 2004, 40(8): 887-890 .
[11] 钟和香; 王淑兰; 张丽君 . TiC对高钛渣电导率的影响[J]. 金属学报, 2004, 40(5): 515-517 .
[12] 钟和香; 王淑兰; 张丽君 . TiC对高钛渣电导率的影响[J]. 金属学报, 2004, 40(5): 515-517 .
[13] 王淑兰; 李光强; 隋智通 . 含Ti高炉渣冷却及析晶过程中导率的变化[J]. 金属学报, 1999, 35(5): 499-502 .
[14] 范平 . 超薄金属膜的电导特性[J]. 金属学报, 1999, 35(3): 261-264 .
[15] 曹晓晖;唐兆麟;黄荣芳;闻立时;师昌绪. 金属薄膜形成过程中电导特性变化的有效媒质理论[J]. 金属学报, 1996, 32(4): 404-408.