Please wait a minute...
金属学报  2010, Vol. 46 Issue (2): 184-188    DOI: 10.3724/SP.J.1037.2009.00474
  论文 本期目录 | 过刊浏览 |
铸造铝合金微观组织对应变硬化指数预测的影响
莫德锋1;何国球1;胡正飞1;刘晓山1;张卫华2
1.同济大学材料科学与工程学院; 上海 200092
2.西南交通大学牵引动力国家重点实验室; 成都 610031
EFFECT OF MICROSTRUCTURES ON STRAIN HARDENING EXPONENT PREDICTION OF CAST ALUMINUM ALLOY
MO Defeng1; HE Guoqiu1; HU Zhengfei1; LIU Xiaoshan1; ZHANG Weihua2
1.School of Materials Science and Engineering; Tongji University; Shanghai 200092
2.State Key Laboratory of Traction Power; Southwest Jiaotong University; Chengdu 610031
全文: PDF(1323 KB)  
摘要: 

研究了铸造铝合金的微观组织参数包括二次枝晶臂间距(SDAS)、Si颗粒的形貌率和体积分数, 与拉伸过程中内应力的关系, 根据Hollomon和内应力公式建立了应变硬化指数n的定量预测关系式. 结果表明: n值反映了材料在较大塑性变形下(在发生塑性松弛以后)的硬化能力. 定义了微结构硬化能力参数, 并用常见的几种铸造铝合金材料进行了验证. 所推导的理论关系式及线性拟合关系式能较好地预测n值, 对同一牌号的铸造铝合金材料, n值对颗粒相形貌率和
SDAS的依赖性强, 而对颗粒相体积分数的依赖性不明显, 颗粒相形貌率和SDAS值越大, n值越小. 对A319和A356/357铝合金, 最佳修正系数分别是0.17和0.11,预测平均误差在10%左右.

关键词 铸造铝合金 应变硬化指数 微结构硬化能力参数 微观组织    
Abstract

Strain hardening exponent (n) of a material is an important parameter reflecting its hardening property whose determination is of great importance. It has a widely application in material scientific research and engineering fields such as fatigue life prediction, stress–concentration–factor calculation, etc.. The value of strain hardening exponent varies with their microstructures in cast aluminum alloys, but a few theoretical and experimental investigations have been reported to understand the effects of the microstructural parameters on the strain hardening exponent in these alloys till now. In the present study, the influence of secondary dendrite arm spacing (SADS), aspect ratio and volume fraction of particles on internal stress in aluminum alloys were discussed, and a quantitative prediction of strain hardening exponnt was established on the basis of Hollomon and internal stress equations. It shows tat the strain hardening exponent represents their hardening ability in relatively large plastic deformation (larger than the upper limit for the no plastic relaxation regime). A new microstructural hardening parameter relatively to strain hardening exponent was defined. Besides, a group of A319 cast aluminum alloys with microstructural heterogeneities were tested. The calculated strain hardening exponents are in agreement with the experimental ones in A319 alloy as well as in some commonly used cast aluminum alloys. For the same grade of alloys, the microstructural hardening parameter and strain hardening exponent are quite sensitive to SDAS and particle aspect ratio while the influence of volume fraction of particles is reltivey little. As the values of SDAS and aspect ratio of particles increse, the vlue of te strain harening exponent decreases. A lier reltionship between microstructural hardeig parameter and strain hardening exponent was proposd. For A319 and A356/57 alloys, the optimum correctin coefficients are 0.17 and 0.11, respectively, and the mean prediction error of n is only bout 10%.

Key wordscast aluminum alloy    strain hardening exponent    microstuctural hardening parameter    microstructure
收稿日期: 2009-07-13     
基金资助:

国家自然科学基金项目50771073和国家重点基础研究发展计划项目2007CB714705资助

通讯作者: 何国球     E-mail: modefeng@163.com
Corresponding author: HE Guoqiu     E-mail: modefeng@163.com
作者简介: 莫德锋, 男, 1982年生, 博士

引用本文:

莫德锋 何国球 胡正飞 刘晓山 张卫华. 铸造铝合金微观组织对应变硬化指数预测的影响[J]. 金属学报, 2010, 46(2): 184-188.
WU De-Feng, HE Guo-Qiu, HU Zheng-Fei, LIU Xiao-Shan, ZHANG Wei-Hua. EFFECT OF MICROSTRUCTURES ON STRAIN HARDENING EXPONENT PREDICTION OF CAST ALUMINUM ALLOY. Acta Metall Sin, 2010, 46(2): 184-188.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2009.00474      或      https://www.ams.org.cn/CN/Y2010/V46/I2/184

[1] Miller W S, Zhuang L, Bottema J, Wittebrood A J, De Smet P, Haszler A, Vieregge A. Mater Sci Eng, 2000; A280: 37
[2] Wang Q G. Metall Mater Trans, 2004; A35: 2707
[3] C´aceres C H, Selling B I. Mater Sci Eng, 1996; A220: 109
[4] Fatahalla N, Hafiz M, Abdulkhalek M. J Mater Sci, 1999; 34: 3555
[5] Wang Q G. Metall Mater Trans, 2003; 34A: 2887
[6] Han Y, Chen S J. Phys Test Chem Anal (Phys Test), 2003; 39: 555
(韩茵, 陈诗键. 理化检验(物理分册), 2003; 39: 555)
[7] Hu Z Z, Cao S Z. J Xi’an Jiaotong Univ, 1993; 27: 71
(胡志忠, 曹淑珍. 西安交通大学学报, 1993; 27: 71)
[8] Morrison W B. Trans ASM, 1996; 59: 824
[9] Antoine P, Vandeputte S, Vogt J B. Mater Sci Eng, 2006; A433: 55
[10] Caceres C H, Griffiths J R, Reiner P. Acta Mater, 1996; 44: 15
[11] Sandor B I ed., transl. by Yu J L. Fundamentals of Cyclic Stress and Strain. Beijing: Science Press, 1985: 59
(Sandor B I著, 俞炯亮译. 循环应力与循环应变的基本原理. 北京:科学出版社, 1985: 59)
[12] Suresh S ed., transl. by Wang Z G. Fatigue of Materials. 2nd Ed., Beijing: National Defence Industry Press, 1999: 218
(Suresh S著; 王中光译. 材料的疲劳(第2版). 北京: 国防工业出版社, 1999: 218)
[13] Ebrahimi R, Pardisa N. Mater Sci Eng, 2009; A518: 56
[14] Mo D F, He G Q, Hu Z F, Zhu Z Y, Chen C S, Zhang W H. Int J Fatigue, 2008; 30: 1843
[15] Wang Q G, Apelian D, Lados D A. J Light Met, 2001; 1: 85
[16] Ovono Ovono D, Guillot I, Massinon D. J Alloys Compd, 2008; 452: 425
[17] Sowerby R, Uko D K, Tomita Y. Mater Sci Eng, 1979; 41: 43
[18] Brown L M, Clarke D R. Acta Metall, 1975; 23: 821
[19] Han C S, Wagonera R H, Barlat F. Int J Plast, 2004; 20: 477
[20] Brown L M. Acta Metall, 1973; 21: 879
[21] Hansen N. Acta Metall, 1977; 25: 863
[22] Ashby M F. Philos Mag, 1970; 21: 399
[23] Hansen N, Huang X. Acta Mater, 1998; 46: 1827
[24] Caceres C H, Griffiths J R. Acta Mater, 1996; 44: 25
[25] Kleemola H J, Nieminen M A. Metall Mater Trans, 1974; 5B: 1863
[26] Hutchinson J W, Obrecht H. Fracture, 1977; 1: 101
[27] Wang Q G, Apelian D, Lados D A. J Light Met, 2001; 1: 73

[1] 刘震鹏, 闫志巧, 陈峰, 王顺成, 龙莹, 吴益雄. 金刚石工具用Cu-10Sn-xNi合金的制备和性能表征[J]. 金属学报, 2020, 56(5): 760-768.
[2] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[3] 马晋遥,王晋,赵云松,张剑,张跃飞,李吉学,张泽. 一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究[J]. 金属学报, 2019, 55(8): 987-996.
[4] 刘耀鸿,王朝辉,刘轲,李淑波,杜文博. Er对Mg-5Zn-xEr镁合金热裂敏感性的影响[J]. 金属学报, 2019, 55(3): 389-398.
[5] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[6] 姚彦桃, 陈礼清, 王文广. 原位反应浸渗法制备(B4C+Ti)混杂增强Mg及AZ91D复合材料及其阻尼性能[J]. 金属学报, 2019, 55(1): 141-148.
[7] 赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54(7): 1031-1041.
[8] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[9] 李金富, 周尧和. 液态金属深过冷快速凝固过程中初生固相的重熔[J]. 金属学报, 2018, 54(5): 627-636.
[10] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[11] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[12] 熊守美, 杜经莲, 郭志鹏, 杨满红, 吴孟武, 毕成, 曹永友. 镁合金压铸过程界面传热行为及凝固组织结构的表征与模拟研究[J]. 金属学报, 2018, 54(2): 174-192.
[13] 李斌, 林小辉, 李瑞, 张国君, 李来平, 张平祥. 不同B含量Mo-Si-B合金的高温抗氧化性能[J]. 金属学报, 2018, 54(12): 1792-1800.
[14] 于菁, 王继杰, 倪丁瑞, 肖伯律, 马宗义, 潘兴龙. 电子束熔丝沉积快速成形2319铝合金的微观组织与力学性能[J]. 金属学报, 2018, 54(12): 1725-1734.
[15] 梅益, 孙全龙, 喻丽华, 王传荣, 肖华强. 基于GA-ELM的铝合金压铸件晶粒尺寸预测[J]. 金属学报, 2017, 53(9): 1125-1132.