Please wait a minute...
金属学报  2010, Vol. 46 Issue (2): 184-188    DOI: 10.3724/SP.J.1037.2009.00474
  论文 本期目录 | 过刊浏览 |
铸造铝合金微观组织对应变硬化指数预测的影响
莫德锋1;何国球1;胡正飞1;刘晓山1;张卫华2
1.同济大学材料科学与工程学院; 上海 200092
2.西南交通大学牵引动力国家重点实验室; 成都 610031
EFFECT OF MICROSTRUCTURES ON STRAIN HARDENING EXPONENT PREDICTION OF CAST ALUMINUM ALLOY
MO Defeng1; HE Guoqiu1; HU Zhengfei1; LIU Xiaoshan1; ZHANG Weihua2
1.School of Materials Science and Engineering; Tongji University; Shanghai 200092
2.State Key Laboratory of Traction Power; Southwest Jiaotong University; Chengdu 610031
引用本文:

莫德锋 何国球 胡正飞 刘晓山 张卫华. 铸造铝合金微观组织对应变硬化指数预测的影响[J]. 金属学报, 2010, 46(2): 184-188.
, , , , . EFFECT OF MICROSTRUCTURES ON STRAIN HARDENING EXPONENT PREDICTION OF CAST ALUMINUM ALLOY[J]. Acta Metall Sin, 2010, 46(2): 184-188.

全文: PDF(1323 KB)  
摘要: 

研究了铸造铝合金的微观组织参数包括二次枝晶臂间距(SDAS)、Si颗粒的形貌率和体积分数, 与拉伸过程中内应力的关系, 根据Hollomon和内应力公式建立了应变硬化指数n的定量预测关系式. 结果表明: n值反映了材料在较大塑性变形下(在发生塑性松弛以后)的硬化能力. 定义了微结构硬化能力参数, 并用常见的几种铸造铝合金材料进行了验证. 所推导的理论关系式及线性拟合关系式能较好地预测n值, 对同一牌号的铸造铝合金材料, n值对颗粒相形貌率和
SDAS的依赖性强, 而对颗粒相体积分数的依赖性不明显, 颗粒相形貌率和SDAS值越大, n值越小. 对A319和A356/357铝合金, 最佳修正系数分别是0.17和0.11,预测平均误差在10%左右.

关键词 铸造铝合金 应变硬化指数 微结构硬化能力参数 微观组织    
Abstract

Strain hardening exponent (n) of a material is an important parameter reflecting its hardening property whose determination is of great importance. It has a widely application in material scientific research and engineering fields such as fatigue life prediction, stress–concentration–factor calculation, etc.. The value of strain hardening exponent varies with their microstructures in cast aluminum alloys, but a few theoretical and experimental investigations have been reported to understand the effects of the microstructural parameters on the strain hardening exponent in these alloys till now. In the present study, the influence of secondary dendrite arm spacing (SADS), aspect ratio and volume fraction of particles on internal stress in aluminum alloys were discussed, and a quantitative prediction of strain hardening exponnt was established on the basis of Hollomon and internal stress equations. It shows tat the strain hardening exponent represents their hardening ability in relatively large plastic deformation (larger than the upper limit for the no plastic relaxation regime). A new microstructural hardening parameter relatively to strain hardening exponent was defined. Besides, a group of A319 cast aluminum alloys with microstructural heterogeneities were tested. The calculated strain hardening exponents are in agreement with the experimental ones in A319 alloy as well as in some commonly used cast aluminum alloys. For the same grade of alloys, the microstructural hardening parameter and strain hardening exponent are quite sensitive to SDAS and particle aspect ratio while the influence of volume fraction of particles is reltivey little. As the values of SDAS and aspect ratio of particles increse, the vlue of te strain harening exponent decreases. A lier reltionship between microstructural hardeig parameter and strain hardening exponent was proposd. For A319 and A356/57 alloys, the optimum correctin coefficients are 0.17 and 0.11, respectively, and the mean prediction error of n is only bout 10%.

Key wordscast aluminum alloy    strain hardening exponent    microstuctural hardening parameter    microstructure
收稿日期: 2009-07-13     
基金资助:

国家自然科学基金项目50771073和国家重点基础研究发展计划项目2007CB714705资助

作者简介: 莫德锋, 男, 1982年生, 博士

[1] Miller W S, Zhuang L, Bottema J, Wittebrood A J, De Smet P, Haszler A, Vieregge A. Mater Sci Eng, 2000; A280: 37
[2] Wang Q G. Metall Mater Trans, 2004; A35: 2707
[3] C´aceres C H, Selling B I. Mater Sci Eng, 1996; A220: 109
[4] Fatahalla N, Hafiz M, Abdulkhalek M. J Mater Sci, 1999; 34: 3555
[5] Wang Q G. Metall Mater Trans, 2003; 34A: 2887
[6] Han Y, Chen S J. Phys Test Chem Anal (Phys Test), 2003; 39: 555
(韩茵, 陈诗键. 理化检验(物理分册), 2003; 39: 555)
[7] Hu Z Z, Cao S Z. J Xi’an Jiaotong Univ, 1993; 27: 71
(胡志忠, 曹淑珍. 西安交通大学学报, 1993; 27: 71)
[8] Morrison W B. Trans ASM, 1996; 59: 824
[9] Antoine P, Vandeputte S, Vogt J B. Mater Sci Eng, 2006; A433: 55
[10] Caceres C H, Griffiths J R, Reiner P. Acta Mater, 1996; 44: 15
[11] Sandor B I ed., transl. by Yu J L. Fundamentals of Cyclic Stress and Strain. Beijing: Science Press, 1985: 59
(Sandor B I著, 俞炯亮译. 循环应力与循环应变的基本原理. 北京:科学出版社, 1985: 59)
[12] Suresh S ed., transl. by Wang Z G. Fatigue of Materials. 2nd Ed., Beijing: National Defence Industry Press, 1999: 218
(Suresh S著; 王中光译. 材料的疲劳(第2版). 北京: 国防工业出版社, 1999: 218)
[13] Ebrahimi R, Pardisa N. Mater Sci Eng, 2009; A518: 56
[14] Mo D F, He G Q, Hu Z F, Zhu Z Y, Chen C S, Zhang W H. Int J Fatigue, 2008; 30: 1843
[15] Wang Q G, Apelian D, Lados D A. J Light Met, 2001; 1: 85
[16] Ovono Ovono D, Guillot I, Massinon D. J Alloys Compd, 2008; 452: 425
[17] Sowerby R, Uko D K, Tomita Y. Mater Sci Eng, 1979; 41: 43
[18] Brown L M, Clarke D R. Acta Metall, 1975; 23: 821
[19] Han C S, Wagonera R H, Barlat F. Int J Plast, 2004; 20: 477
[20] Brown L M. Acta Metall, 1973; 21: 879
[21] Hansen N. Acta Metall, 1977; 25: 863
[22] Ashby M F. Philos Mag, 1970; 21: 399
[23] Hansen N, Huang X. Acta Mater, 1998; 46: 1827
[24] Caceres C H, Griffiths J R. Acta Mater, 1996; 44: 25
[25] Kleemola H J, Nieminen M A. Metall Mater Trans, 1974; 5B: 1863
[26] Hutchinson J W, Obrecht H. Fracture, 1977; 1: 101
[27] Wang Q G, Apelian D, Lados D A. J Light Met, 2001; 1: 73

[1] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[2] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[6] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[7] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[8] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[9] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[10] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[11] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[12] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[13] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[14] 何焕生, 余黎明, 刘晨曦, 李会军, 高秋志, 刘永长. 新一代马氏体耐热钢G115的研究进展[J]. 金属学报, 2022, 58(3): 311-323.
[15] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.