金属学报, 2023, 59(8): 1027-1041 DOI: 10.11900/0412.1961.2023.00184

综述

奥氏体基Fe-Mn-Al-C轻质钢的研究进展

丁桦,1,2,3, 张宇3, 蔡明晖1,3, 唐正友1,3

1东北大学 材料科学与工程学院 沈阳 110819

2东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819

3东北大学 辽宁省轻量化用关键金属结构材料重点实验室 沈阳 110819

Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels

DING Hua,1,2,3, ZHANG Yu3, CAI Minghui1,3, TANG Zhengyou1,3

1School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China

2State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China

3Key Laboratory of Lightweight Structural Materials, Liaoning Province, Northeastern University, Shenyang 110819, China

通讯作者: 丁 桦,dingh@smm.neu.edu.cn,主要从事高性能材料的制备与组织性能控制的研究

责任编辑: 李海兰

收稿日期: 2023-05-04   修回日期: 2023-06-20  

基金资助: 国家自然科学基金项目(U1760205)
国家自然科学基金项目(51474062)

Corresponding authors: DING Hua, professor, Tel: 13898876262, E-mail:dingh@smm.neu.edu.cn

Received: 2023-05-04   Revised: 2023-06-20  

Fund supported: National Natural Science Foundation of China(U1760205)
National Natural Science Foundation of China(51474062)

作者简介 About authors

丁 桦,女,1958年生,教授,博士

摘要

材料的轻量化是一个永恒的课题。Fe-Mn-Al-C钢密度低,综合性能良好,日益得到材料研究领域和工业界的重视。在Fe-Mn-Al-C轻质钢中,通过对合金成分和工艺参数进行设计,可以获得不同的显微组织,得到力学性能范围很宽的高性能钢。新一代轻质高强Fe-Mn-Al-C钢的组织演变和变形机制有很多与其他钢铁材料不同的特点,涉及到许多新的物理冶金问题,需要对其进行深入研究。本文对近年来奥氏体基Fe-Mn-Al-C轻质钢中合金元素的作用、组织与性能之间的关系及变形机制等方面的研究进行综述,并对未来的研究方向做了展望,提出应进一步加强在新型Fe-Mn-Al-C轻质钢的合金设计、组织设计与调控、变形机制的定量分析及成形与使役性能等方面的研究,为高性能Fe-Mn-Al-C轻质钢的开发与应用奠定基础。

关键词: Fe-Mn-Al-C; 轻质钢; 奥氏体; 力学性能; 变形机制

Abstract

Weight reduction of materials is an eternal topic. Recently, Fe-Mn-Al-C steels with low density and good comprehensive properties have attracted considerable interests in the fields of material research and industries. In Fe-Mn-Al-C steels, various microstructures can be produced and various mechanical properties can be achieved by rationally designing alloying compositions and process parameters. In the new-generation lightweight, high-strength Fe-Mn-Al-C steels, microstructural evolution and deformation mechanisms possess many characteristics that differ from those in other steels, and several novel aspects in physical metallurgy are involved and require to be thoroughly researched. In this paper, recent progress on the role of alloying elements, the relationship between microstructures and mechanical properties, and deformation mechanisms was reviewed and the future directions of research are proposed. To provide a solid foundation for the development and applications of the new type of Fe-Mn-Al-C lightweight steels, alloy design, microstructural design and control, quantitative analysis of deformation mechanisms, and forming and service properties should be focused.

Keywords: Fe-Mn-Al-C; lightweight steel; austenite; mechanical property; deformation mechanism

PDF (2481KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041 DOI:10.11900/0412.1961.2023.00184

DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. Acta Metallurgica Sinica, 2023, 59(8): 1027-1041 DOI:10.11900/0412.1961.2023.00184

Fe-Mn-Al-C钢最初是在20世纪50年代开发出来的,主要目的是用Mn和Al代替昂贵的Cr和Ni,以实现对Fe-Cr-Ni不锈钢的替代[1]。叶基石[2]在Fe-Mn-Al-C相图研究成果的基础上进行成分优化,成功开发了以15Mn26Al4为代表的低温钢。2000年,Frommeyer和Brüx[3]在研究Fe-Mn-Al-C轻质钢的微观组织和力学性能的基础上,提出可将其用于制备汽车用钢,拓展了轻质钢的应用范围。

在Fe-Mn-Al-C钢中,随着Al含量的增加,钢的密度降低。当添加Al元素的质量分数为12%时,使钢的密度降至6.5 g/cm3 [3]。近年来,Fe-Mn-Al-C轻质钢由于其优异的综合性能得到广泛关注[4~6]。韩国科研人员[7~10]研发了一系列的Fe-Mn-Al-C轻质钢,其强塑积最高可达80 GPa‧%。德国科研人员[11~13]分析了Fe-Mn-Al-C钢的组织性能调控及变形机制,并对其服役性能进行了研究。在超高强轻质钢方面,Hwang等[14]通过在Fe-Mn-Al-C钢中添加Ni元素,使实验用钢获得了抗拉强度1622 MPa、总伸长率约为20%的优异性能。近10年来,国内对Fe-Mn-Al-C钢的研究日益深入,在高强轻质钢的制备、显微组织表征、力学行为及变形机制方面进行了大量研究[15~22]。同时,世界各主要钢铁公司也在积极进行工业化试制和应用,如韩国POSCO 2015年进行了轻质钢的工业化试制,国内宝武集团、兴澄特钢和鞍钢集团近期也开展了轻质钢的制备。

根据合金元素和热处理条件的不同,Fe-Mn-Al-C轻质钢呈现出多类型的固态相变行为,变形过程中的组织演变和变形机制与其他高强钢也有着显著差异。这既为合金的性能调控拓展了空间,同时也带来了许多新的物理冶金问题。目前,虽然对Fe-Mn-Al-C轻质钢已有大量的研究,但是对研究结果的分析仍存在一些相互矛盾之处,在轻质钢的组织性能调控方面也有诸多问题尚待解决,同时在应用领域亦存在拓展空间。

Fe-Mn-Al-C轻质钢可以分为奥氏体轻质钢[7~10,20,21]、奥氏体基双相轻质钢[19,23~26]和铁素体基双相轻质钢[27~29]。Fe-Mn-Al-C轻质钢的合金元素成分差异很大,制备工艺也不尽相同,因此变形行为也有很大差异。本文对全奥氏体以及奥氏体基双相轻质钢近年来的研究现状进行综述,重点评述合金元素的作用、组织性能调控和变形机制方面的研究工作,并对未来的研究方向和应用领域进行展望。

1 轻质钢中的析出相

由于奥氏体基Fe-Mn-Al-C轻质钢中的合金元素含量很高,在退火及淬火过程中会发生各种有序相的沉淀反应。典型的析出相有κ相、B2相和D03相,其晶体结构如图1[30]所示。

图1

图1   奥氏体基Fe-Mn-Al-C轻质钢有序相的原子位置示意图[30]

Fig.1   Schematics showing the atomic position in the ordered lattices of a Fe-Mn-Al-C system[30]

(a) κ phase (b) B2 phase (c) D03 phase


在Fe-Mn-Al-C轻质钢中,当Al和C含量达到一定值,会在奥氏体基体上形成有序碳化物[3]。碳化物理想的化学式为(Fe, Mn)3AlC。亚稳相(Fe, Mn)3AlC x (x < 1)的结构与其相同,但是C的占位不完全[4]。在有序碳化物中,Al原子占据8个角位,Fe和Mn占据面心位置,C原子占据体心位置,如图1a[30]所示。B2相属于有序型bcc结构(图1b[30]),理想的化学式为FeAl。D03相的化学式是(Fe, Mn)3Al (图1c[30]),存在于铁素体和B2相中。

Fe-Mn-Al-C轻质钢中碳化物的分类主要包括晶内κ碳化物和晶界κ碳化物2种。晶内κ碳化物的尺寸一般为纳米级,与奥氏体共格,晶格错配度低于3%,呈立方型-立方型晶体学位向关系,即[100]κ//[100]γ,(100)κ//(100)γ [31]。长期以来,研究者们[32~39]认为晶内碳化物是通过调幅分解和后续的有序化形成的。其具体形成过程为:发生调幅分解反应,溶质原子C和Al的短程扩散导致奥氏体内出现贫/富溶质原子区域;溶质原子富集的区域转变成L12相,最终通过C的进一步有序化形成E21结构的κ相。然而,在实际转变过程中往往会形成非化学计量比的κ相(Fe, Mn)3AlC x (x < 1)),称为L′12相。近年来,有研究者[39]采用原子探针对κ相的合金成分进行了测定,穿过奥氏体和碳化物的正弦曲线形状的成分分布被认为是κ相形成过程中发生失稳分解的证据。

在近期的研究[40,41]中对碳化物的形成机制提出了新的看法。有研究者[40]采用高分辨扫描透射电子显微镜(HR-STEM)和三维原子探针(3D-APT)对奥氏体基Fe-20Mn-9Al-3Cr-1.2C (质量分数,%,下同)钢进行原子尺度表征,结果表明形成了尺寸为2~3 nm的L′12有序碳化物。同时还采用热力学计算证实了轻质钢中碳化物的形成是由形核和长大完成的,而非调幅分解的结果,并指出这可归结为奥氏体和碳化物相似的晶体结构和成分以及完全共格的取向关系[40]

根据合金成分和热处理温度的不同,奥氏体晶界κ碳化物可由沉淀反应、共析反应或胞状转变形成[1,42~44]。发生沉淀反应时,碳化物沿奥氏体晶界析出;当退火时间增加到一定程度,碳化物会沿着晶界形成连续的碳化物膜。在发生共析反应时,高温奥氏体分解为低温的两相,即γκ + α,呈片层状。在晶界处不连续的碳化物有利于提高轻质钢的应变硬化能力,但对轻质钢的塑性和韧性产生不利的影响。胞状转变是一种特殊的沉淀反应,是包含晶界迁移的不连续析出过程。碳化物和铁素体同时在晶界形核,而且向奥氏体基体内生长。

对Fe-11Mn-10Al-1.25C轻质钢的研究[43]表明:通过改变热处理温度,可显著改变组织组成及κ相的尺寸、形貌和分布(图2[43])。其中,图2a[43]示出了在3个温度下退火的X射线衍射(XRD)谱。1000℃退火获得的是奥氏体组织(图2b[43]);900℃退火可获得γ + α +晶界κ碳化物三相组织,如图2c[43]所示;在800℃退火形成片层组织,由共析反应γα + κ得到,如图2d[43]所示。对Fe-11Mn-xAl-yC钢的进一步研究[44]表明,冷轧+退火后在材料中形成了多种尺度的碳化物。晶内纳米级κ碳化物可显著提高轻质钢的屈服强度,但会对其应变硬化率的提升产生影响;晶界亚微米级κ碳化物可阻碍位错运动,使轻质钢的应变硬化能力增加,但会引起α/κ界面处的应力集中,从而引发材料的提前失效。因此,需综合考虑优化中锰双相轻质钢的相组成及碳化物的形态和分布特征,在较大范围内实现对材料力学性能的调控。

图2

图2   Fe-11Mn-10Al-1.25C钢不同温度退火后的XRD谱和显微组织[43]

Fig.2   XRD spectra (a) and micrographs of Fe-11Mn-10Al-1.25C steel after annealing at 1000oC (b), 900oC (c), and 800oC (d)[43] (D—diameter of phase, subscripts γ, α, and GB-κ represent corresponding γ, α phases, and κ phase at grain boun-daries; inset in Fig.1c shows the magnified microstructure)


在Fe-Mn-Al-C四元相图的实验研究和热力学计算方面已有许多工作[45~48]。针对Fe-(20, 30)Mn-xAl-yC四元合金,Ishida等[45]在900~1200℃的温度范围内建立了等温相图。Kim和Kang[46]对Fe-10Mn-xAl-yC进行了实验研究。同时,为预测高锰高铝钢的平衡相组成,还开发了热力学数据库。Chin等[47]将Mn-Al-C数据库、Fe-Al-C数据库与Thermo-Calc中钢的数据库相结合,通过相图计算(CALPHAD)方法对Fe-Mn-Al-C四元系中(Fe, Mn)3AlC碳化物的稳定性进行了计算,并解释了Fe-Mn-Al-C钢的组织演变。Fartushna等[48]对Fe-Mn-Al-C四元系在1000和1100℃的相平衡进行了实验研究,并着重研究了κ碳化物的形成。他们的实验结果与文献[45]中的结果吻合较好,而与文献[46,47]的计算结果有所不同,具体体现为κ碳化物的成分区间比计算获得的范围更宽。因此,有必要继续提高热力学数据库的精确度以获得更为精确的相平衡计算结果。

有研究者[49]将三维相场法与CALPHAD相结合,考察了轻质钢中κ碳化物的演变规律。结果表明,在κ碳化物形核初期,κ碳化物的形貌由界面能主导;而在形核后期,弹性应变能则成为主要的影响因素。也有研究者[50~52]采用原子探针与原位X射线同步辐射等实验方法,并结合第一性原理和密度泛函理论(density functional theory,DFT)确定了κ碳化物的成分,并研究了其形成序列。Dey等[52]采用原子探针对Fe-29.8Mn-7.7Al-1.3C轻质钢中κ碳化物的化学成分进行了精细分析,发现晶内和晶界碳化物中的C含量均偏离理论化学计量比,且2种碳化物中的C含量存在差别,晶内碳化物中的C含量更低。他们采用DFT理论对其原因进行了分析。计算结果表明,E21结构在<100>方向具有弹性硬取向,导致碳化物与基体的错配度为9%,这使得共格界面难以保持。碳化物中出现C元素的不完全配分能够减少其中的C含量,进而降低碳化物与基体之间的错配度。因此,与非共格的晶界碳化物相比,与奥氏体基体共格的晶内碳化物的C含量更低。需要指出的是,Fe-Mn-Al-C钢中碳化物的形成条件不仅由C含量决定,还受到Al含量的影响。然而在Dey等[52]的工作中,并未考虑Al的作用。因此,需要综合考虑C和Al的作用,从而对理论模型作进一步的改进和修正。

Ha等[30]对Fe-27Mn-12Al-0.8C钢的研究表明,在奥氏体+铁素体两相区退火并淬火后出现了B2、D03以及κ碳化物多种有序相。其中,D03相存在于铁素体和B2相中,呈细小弥散分布。同时,纳米κ碳化物存在于奥氏体基体之中。Liu等[53]采用快速凝固方法制备了Fe-20Mn-9Al-0.75C钢,研究表明,铸带组织由奥氏体和δ铁素体组成,奥氏体和铁素体中分别有κ相和D03相。在400~600℃退火,可促进纳米级有序D03相和κ碳化物的进一步析出。此外,当退火温度为800℃时,发生γα + κ共析转变。

综上,目前有关Fe-Mn-Al-C轻质钢中析出相的研究取得了较为丰富的成果,对各种类型的析出有了较为系统的精细表征和定量分析。在未来的研究中,可加强相场模拟、分子动力学以及第一性原理等方法在各类型析出相形成及长大方面的相关理论计算工作,并结合多尺度的精细表征,深入揭示析出相的形核条件及长大行为,从而实现对Fe-Mn-Al-C轻质钢的显微组织优化设计以及力学性能的精准调控。

2 轻质钢的成分设计特点

2.1 主合金元素

在Fe-Mn-Al-C轻质钢中,主要合金元素为Mn、Al和C。

Mn是扩大奥氏体相区元素,并可在一定范围内提高Fe-Mn-Al-C轻质钢的层错能。Mn对碳化物的析出与长大无明显作用,增加Mn含量会在一定程度上抑制碳化物的形成[54]

C的作用之一是扩大奥氏体相区,增加C含量能够提高奥氏体的体积分数和稳定性,同时促进碳化物的形成。C的添加能够提高奥氏体的层错能。此外,C的添加还可以起到间隙固溶强化作用[55,56]

Al是铁素体形成元素,是实现轻质钢密度降低的重要元素。在Fe-Mn-Al-C轻质钢中,Al含量的高低可显著影响组织形态,主要包括铁素体的体积分数以及是否形成碳化物或其他有序相等方面。Al的添加能够对Fe-Mn-Al-C轻质钢中κ碳化物的析出和长大起到明显的促进作用[57]。同时,Al可以显著提高Fe-Mn-Al-C轻质钢的层错能,从而影响材料的变形机制。因此,Al元素是一种重要的组织调控元素。

Al和C的含量对Fe-Mn-Al-C轻质钢碳化物的类型及形成条件有着重要的影响。文献[58]指出,对于晶内κ碳化物,Al和C的含量通常高于6.2%和1.0% (质量分数。下文含量如无特殊说明,均指质量分数);而对于晶界κ碳化物,Al和C的含量通常高于5.5%和0.67%。随着Al和C含量的增加,形成碳化物的化学驱动力增加,同时奥氏体的晶格常数也增加,因此奥氏体基体与晶内碳化物间的错配度降低,共格应变能降低,从而有利于晶内碳化物的析出。除了合金成分之外,Fe-Mn-Al-C轻质钢中碳化物析出的热力学和动力学过程还与热处理制度密切相关,包括热处理方式、温度、时间和冷却速率等。因此,需综合考虑合金成分和热处理制度等因素对碳化物形成条件的影响。

2.2 其他合金元素

除主合金元素外,近年来有关添加其他合金元素对Fe-Mn-Al-C轻质钢组织调控及性能提升作用的研究工作也有一定程度的进展。

Ni是近期研究者们非常关注的合金元素[14,59~66]。在Fe-Mn-Al-C轻质钢中添加Ni元素后,易于形成B2相。Kim等[59]率先对Ni的合金化进行了研究,制备了Fe-15Mn-10Al-0.8C-5Ni钢,并指出其超高的强度主要源于大量B2相的强化作用。在此基础上,研究者们又研究了含Ni轻质钢中B2相和碳化物的复合沉淀析出行为。Zhang等[60]研究了Fe-16Mn-9Al-0.8C-3Ni钢在时效处理过程中B2相和碳化物的析出行为及其对力学性能的影响。结果表明,第二相粒子强化+有序强化的协同作用提高了材料的屈服强度和抗拉强度,并且不损失塑性。Hwang等[14]对Fe-21Mn-10Al-1C-5Ni钢进行了研究,实验用钢经退火处理后获得完全再结晶+部分再结晶组织。其中,多边形的B2相粒子存在于再结晶晶界处,片状B2相则形成于未再结晶晶粒中。此外,在奥氏体和B2相中还分别形成了纳米尺寸的碳化物和D03粒子。Kim等[61]采用3D-APT分析了含1.5%Ni和3%Ni的Fe-30Mn-10Al-0.9C-0.5Si-1.5Mo合金中碳化物的沉淀行为,结果表明:含3%Ni的实验用钢时效后Al元素择优富集于奥氏体基体,导致碳化物中贫Al,说明Ni的添加引起了Al从碳化物向奥氏体的配分,这与一般情况下碳化物富Al有所不同。添加Ni后,沉淀强化和固溶强化共同作用,有效阻碍了位错的运动,促进了合金的连续硬化。

在Fe-Mn-Al-C轻质钢中添加Si的研究比较多[32,40,67~69]。与Al类似,添加Si也可降低奥氏体钢的质量密度,每添加1%Si可使钢的密度降低0.8%。Bartlett等[67]研究了Si对Fe-30Mn-9Al-(0.59~1.56)Si-0.9C-0.5Mo钢碳化物沉淀的影响。结果表明,Si含量从0.59%增至1.56%,加速了κ碳化物的形成。Kim等[32,68]研究了Si对Fe-30Mn-9Al-0.9C-0.5Mo轻质钢变形机制的影响。3D-APT结果表明添加Si加速了κ相的形成动力学,在时效过程中Si促进了C向碳化物的配分。Zhi等[69]对中等Al含量的Fe-21Mn-6Al-1C-xSi (x = 0、1.5、3)合金进行了研究,结果表明Si的添加促进了κ相的有序化。

在Fe-Mn-Al-C轻质钢中添加Cu,可促进纳米尺寸的富Cu相和κ相的析出[70~73]。Cu作为奥氏体稳定化元素,可以增加奥氏体的体积分数,且其固溶拖曳作用还可以抑制再结晶的发生[70]。富Cu粒子促进纳米κ相的形成,2者的共同作用提高了轻质钢的强度水平[71]

在Fe-Mn-Al-C轻质钢中添加微合金元素Nb和V[74~79],可以细化奥氏体晶粒尺寸。同时这些元素与C原子可形成熔点高、稳定性强的碳化物,能够有效钉扎位错。Park等[75]对Fe-20Mn-8Al-1.0C-0.1Nb的研究表明,添加Nb元素后合金的晶粒尺寸发生了明显的细化,Nb的添加减缓了时效过程中碳化物的形成动力学。在400℃暴露5000 h时,Nb的添加抑制了滑移带的形成。在轻质钢中添加V后,对κ碳化物的沉淀行为产生影响,同时可实现含V碳化物和κ碳化物的双沉淀效应[77~79]

为提高轻质钢的耐蚀性能和高温性能,科研人员研究了Cr、Mo和Co元素对Fe-Mn-Al-C轻质钢相变和显微组织的影响。Cr是铁素体稳定化元素,可抑制碳化物的形成,增加铁素体的含量。Cr的添加可提高Fe-Mn-Al-C钢的强度、硬度和可成形性,从而获得耐腐蚀、耐高温氧化和抗蠕变性能优良的轻质钢[80~82]。对Fe-(20~30)Mn-(11.5~12.0)Al-1.5C-5Cr系列合金的研究[80]表明,与铁素体不锈钢类似,表面富Al的氧化膜使含Cr的轻质钢具有良好的抗点蚀能力。这类合金拥有更高的强度,同时减重效果好,具有替代商用不锈钢的潜力。Moon等[83]研究了Mo的添加对奥氏体Fe-Mn-Al-C轻质钢中碳化物沉淀行为的影响。第一性原理计算结果表明,在κ碳化物中Mo替代Fe和Mn在能量上是不可行的,且会增加奥氏体基体和κ碳化物之间的界面能。APT和TEM实验结果证实了第一原理计算结果,即Mo的添加对κ碳化物的形成动力学起延缓作用。对添加Co的Fe-Mn-Al-C轻质钢的研究[84]表明,铸造组织为α + D03 + γ + κ。Co含量9%的合金为近奥氏体组织。材料在1000~1100℃进行热处理后,组织为(γ + κ)。当Co含量大于5%时,合金在650~950℃时效后,在基体和晶界形成有序的Co23C6。添加Co元素后不仅可以在高温下稳定奥氏体,还可以阻碍时效过程中碳化物的析出。

有关合金元素复合添加对Fe-Mn-Al-C轻质钢组织和性能影响的研究亦有相关报道。对Nb-V微合金化的Fe-Mn-Al-C奥氏体不锈钢低周疲劳性能的研究[85]表明,在一定的应变下,Nb-V微合金化可提高材料的疲劳寿命。与κ碳化物相比,含Nb-V钢中的(Nb, V)C粒子有利于提高材料的疲劳寿命。对Fe-20Mn-6Ti-3Al-0.06C-Nb-Ni钢的研究结果[86]表明,这种钢呈现出复相组织特征,其奥氏体基中含有部分有序的铁素体、Laves相(Fe2Ti)和细小的MC碳化物。值得指出的是,含Ti轻质钢的组织具有高的热稳定性,可避免高温下脆性碳化物的形成。这种轻质钢的合金设计为材料在高温条件下的应用提供了新的思路。此外,多种元素复合添加的合金设计理念也为Fe-Mn-Al-C轻质钢在更多领域的应用提供了参考。

通过揭示合金元素在奥氏体和碳化物之间的配分规律,能够明确碳化物的析出行为。同时,对于复合添加微合金元素的Fe-Mn-Al-C轻质钢,其热处理过程中会形成多种类型的析出相。因此,综合考虑各析出相的协同作用,有效调控析出相的类型及其特征,可实现材料性能的优化与提升,从而拓展Fe-Mn-Al-C钢轻质钢的应用领域,有待进一步研究。

3 轻质钢的力学性能

表1[3,7,12,16,23,30,42,87]列出了减重效果显著的Fe-Mn-Al-C轻质钢(Al含量≥ 8%)的组织特征和性能指标。可见,全奥氏体钢的强度不是很高,但伸长率十分优异。而奥氏体+铁素体双相钢变形时由于两相之间的相间不相容性,导致伸长率相比于奥氏体钢有一定程度的降低。无论是全奥氏体轻质钢还是双相轻质钢,在奥氏体基体中晶内κ相的存在均可显著提高轻质钢的屈服强度及抗拉强度。同时可以看出,即使Mn含量有所降低,但可通过采用合适的形变热处理工艺获得与较高Mn含量轻质钢相同的相组成,从而得到相近的力学性能。例如,Fe-18Mn-10Al-0.8C钢和Fe-27Mn-12Al-0.8C的组织组成都是α + γ + κ + B2 + D03,2者的力学性能也相当。

表1   奥氏体和奥氏体基双相轻质钢的力学性能和相组成[3,7,12,16,23,30,42,87]

Table 1  Mechanical properties and phase constituents of austenite and austenite-based duplex lightweight steels[3,7,12,16,23,30,42,87]

Alloy (mass fraction / %)YS / MPaUTS / MPaTE / %Phaseρ / (g·cm-3)Γ / (mJ·m-2)Ref.
Fe-28Mn-9Al-0.8C440840100γ6.7885[7]
Fe-30.4Mn-8Al-1.2C1020112541γ + κ--[87]
Fe-20Mn-9Al-0.6C51480646γ + α6.8470[23]
Fe-28Mn-12Al-1.0C7301000~55γ + α + κ6.50110[3]
Fe-25.7Mn-10.6Al-1.2C1251138743γ + α + κ--[12]
Fe-27Mn-12Al-0.8C81295542γ + δ + κ + B2 + D036.5392[30]
Fe-18Mn-10Al-0.8C71197938γ + α + κ + B2 + D036.8877.9[16]
Fe-11Mn-10Al-1.25C1041109729γ + α + κ--[42]

Note: YS—yield strength, UTS—ultimate tensile strength, TE—total elongation, ρ—density, Γ—stacking fault energy

新窗口打开| 下载CSV


图3[14,19,40,59~63,69,71~73,80]示出了添加其他合金元素的Fe-Mn-Al-C轻质钢的力学性能。由图可知,相比于其他合金元素,添加Ni元素可显著提升轻质钢的强度。在抗拉强度达到1400~1600 MPa的超高强度范围时,Fe-Mn-Al-C-Ni轻质钢仍能保持较高的伸长率(20%~30%),这是因为Ni的添加促进了大量有序的B2相形成,从而起到了显著的强化效果。添加其他合金元素(除Ni之外)轻质钢的强度级别为1000~1100 MPa时,伸长率为33%~46%。当然,其中一些合金元素在提高耐蚀性、高温强度及服役性能方面有其独特的优势。如若进一步提高Fe-Mn-Al-C轻质钢的力学性能和使役性能,需要综合考虑各合金元素的协同作用,合理设计和优化材料的合金成分和微观组织。

图3

图3   Fe-Mn-Al-C-X轻质钢的抗拉强度和总伸长率比较图[14,19,40,59~63,69,71~73,80]

Fig.3   Comparisons of tensile strength and total elongation of Fe-Mn-Al-C-X lightweight ste-els[14,19,40,59-63,69,71-73,80]


4 轻质钢的变形机制

层错能是理解材料组织与性能之间关系的一个重要参数,层错能通过改变材料的变形机制进而影响材料的力学性能[88,89]

一般认为,当锰钢的层错能低于20 mJ/m2时,发生相变诱发塑性(TRIP)效应;而孪生诱发塑性(TWIP)钢的层错能范围一般为20~40 mJ/m2 [90]。在奥氏体基Fe-Mn-Al-C系轻质钢中,当Mn和Al含量达到一定程度时,材料中奥氏体的层错能一般很高,为70~110 mJ/m2,此时既不发生TRIP效应,也不发生TWIP效应,位错滑移是主要的变形机制。

Frommeyer和Brüx[3]对Fe-26/28Mn-10/12Al-1.0/1.2C钢的显微组织和力学性能进行了研究。结果表明,在高锰高铝轻质钢的变形过程中形成均匀的剪切带,认为均匀的剪切变形对总的塑性有重要贡献,因而称其为剪切带诱发塑性(shear band induced plasticity,SIP)。但是,对变形过程中的组织演变及剪切带的形成机理并未做深入研究。

Yoo和Park[7]对Fe-28Mn-9Al-0.8C钢(层错能约为85 mJ/m2)的研究表明,低应变时实验用钢主要发生平面滑移,不出现胞状结构和位错塞积。随着变形过程的进行,形成低能结构的Taylor晶格(Taylor lattice)。当应变较大时,实验用钢内部形成由几何必需位错组成的显微带,显微带间亦会发生交割。作者认为显微带的形成与演化对材料的塑性有贡献,故称其为显微带诱发塑性(microband-induced plasticity,MBIP)。吴志强[31]对不同Al含量的轻质钢在不同变形量下的位错结构演变进行了精细表征,并对2种实验用钢位错开动的临界切应力进行了定量计算,结果表明,在Fe-26Mn-8/10Al-1C轻质钢的变形过程中发生平面滑移;当真应变为0.26时,8Al钢中已经形成了显微带,但是10Al钢在真应变为0.41时才形成显微带。增加Al含量提高了轻质钢位错开动的临界切应力,使得10Al钢需要在更高的应变下才能形成显微带结构,说明添加Al能够推迟显微带的形成。

Welsch等[91]对热轧后淬火处理的Fe-30.4Mn-8Al-1.2C钢的显微组织和应变硬化行为进行了研究。TEM结果表明,奥氏体中存在有序的碳化物,但数量很少;电子通道衬度成像(electron channel contrast image,ECCI)结果表明,奥氏体在发生平面滑移后并未形成显微带,而是形成了大量的滑移带,且滑移带的间距在变形过程中不断减小。作者认为材料高的应变硬化率是由滑移带结构的细化引起的,并据此提出了动态滑移带细化(dynamic slip band refinement,DSBR)机制。轻质钢中的密集滑移带在其他文献[22,92,93]中亦有报道。

有研究者[1]认为,Fe-Mn-Al-C钢在变形过程中具体出现何种机制是由微观组织决定的。如果奥氏体中存在短程有序,显微带和动态滑移带细化是主要的变形机制;而如果奥氏体中有纳米级碳化物,则出现剪切带。然而,许多研究结果并不完全支持这个结论。例如,Fe-26Mn-12Al-1C钢经固溶淬火后即形成了碳化物,但在其变形过程中并未发现剪切带,而是出现了滑移带[92]。Haase等[93]对Fe-29.8Mn-7.65Al-1.11C钢的变形行为进行了研究,比较了碳化物对轻质钢变形行为的影响。结果表明,无论碳化物存在与否,材料变形过程中的组织演变并无明显差异。在变形初期,奥氏体发生平面滑移;随着应变的增加,滑移带的体积分数增加,组织发生显著细化。对Fe-20Mn-9Al-1.2C-xCr钢变形过程的研究[19]表明,滑移带和显微带共存,且前者出现得更早。文献[93]也报道观察到了滑移带和显微带。

当Fe-Mn-Al-C钢的层错能较高时,奥氏体的变形机制以平面滑移为主。滑移带和显微带都是由奥氏体内部位错的平面滑移所导致,即滑移带和显微带是奥氏体位错平面滑移在不同应变下所产生的现象。此外,碳化物的作用同样不可忽视。目前在有关滑移带/显微带的出现与微观组织关联性方面仍存在争议,例如,碳化物的有序程度及其与位错交互作用的方式对轻质钢变形方式的影响机制仍不明确。因此,有必要在碳化物对滑移带和显微带的影响机制及对性能的影响方面做进一步的研究。

需要注意的是,目前有关Fe-Mn-Al-C轻质钢微观变形机制的分析和研究主要依赖于对变形后或间断变形过程进行常规手段的显微组织表征,这使得对变形过程中的微观组织演变以及变形机理的认识不够清晰,仍具一定的局限性。得益于先进表征技术的不断提升,采用多种表征手段(原位SEM、EBSD、数字图像相关(DIC)和TEM、同步辐射及中子衍射)能够实现对材料的变形过程进行精细表征。因此,采用多种先进技术手段对Fe-Mn-Al-C轻质钢的变形过程进行原位表征,能够清晰阐明变形过程中的微观组织演变,从而有助于深入揭示Fe-Mn-Al-C轻质钢的微观变形机制,这是Fe-Mn-Al-C轻质钢未来研究中的一个重要发展方向。

5 轻质钢的强化机制

一般地,高强钢的主要强化机制为固溶强化、细晶强化、应变强化、沉淀强化和相变强化。对不同Al含量的热轧Fe-26Mn-xAl-1.0C钢的研究[92]表明,当Al含量从6%增加至10%时,屈服强度的增量仅为约100 MPa;而当Al含量从10%增加至12%时,屈服强度增加了482 MPa。组织分析表明,当Al含量从6%增加至12%,晶粒尺寸从84 μm细化至40 μm;当Al含量达到10%时,出现碳化物;当Al含量为12%时,出现铁素体。由于铁素体的含量较少,可以认为晶粒细化和纳米级碳化物粒子强化机制的作用占主要地位,而Al的固溶强化并非是重要的强化机制。Sutou等[24]研究了Fe-20Mn-(10~14)Al-(0~1.8)C的力学性能,结果表明,当Al和C的含量较高时,材料的高强度主要来源于纳米级碳化物。Yao等[87]将Fe-30.4Mn-8Al-1.2C合金进行等温退火处理,并与固溶态不含κ碳化物的材料进行比较,发现含有κ碳化物的钢的屈服强度提高了约480 MPa。这些研究结果均说明纳米级碳化物显著提高了轻质钢的屈服强度。

应变强化也是Fe-Mn-Al-C轻质钢重要的强化机制。在变形过程中,随着应变的增大,晶粒内开动的滑移系增加,位错密度增加,使材料的强度提高。在发生“动态滑移带细化”时,位错在滑移带前塞积。随着滑移带的间距不断减小,应变硬化效果持续增加[91];奥氏体晶粒在变形过程中发生“碎化”,各区域由稠密的位错墙分开,并逐渐分裂为平行的位错墙,平行的位错墙构成显微带[7]。这个过程中位错密度的增加也可对Fe-Mn-Al-C钢起到强化作用。

对高锰TWIP钢和奥氏体轻质钢的应变硬化行为进行比较的结果[1]表明,轻质钢的应变硬化能力均低于高锰TWIP钢。有研究[31,36]指出,奥氏体轻质钢中Al和C的含量越高,材料的应变硬化率越低;时效时间的增加也会降低轻质钢的应变硬化率。这种应变硬化率的变化一般与κ碳化物有关。他们将奥氏体基轻质钢较低的应变硬化率归结为“滑移面软化(glide plane softening)”效应。在位错滑移过程中,晶内细小弥散碳化物尺寸极为细小(小于10 nm),领先位错在遭遇碳化物阻碍后会将其切过,这一过程能够降低该滑移面上后续位错的滑移阻力,使得滑移更加容易[31,36],因此材料的应变硬化能力降低。

一些文献[40,68]根据叠加法则对奥氏体基轻质钢的强化机制进行了定量分析,综合考虑奥氏体的晶格摩擦力、固溶强化、晶界强化、第二相粒子强化和位错强化的作用,分析材料中各种强化机制对屈服强度的贡献。对于固溶和时效态,不考虑位错强化。而在计算第二相强化作用时,主要考虑碳化物的共格强化、模量强化和有序强化,忽略了化学强化和层错强化的作用。Liu等[44]分别考虑奥氏体和铁素体中各种强化机制的作用,采用叠加法则和混合法则对Fe-11Mn-xAl-yC钢的屈服强度进行了定量分析。目前采用理论模型对奥氏体+铁素体双相钢强化机制的定量计算工作仍需要加强。

有关位错与晶内碳化物相互作用方面的研究已有一些报道[31,32]。这些研究结果表明,纳米级晶内碳化物对Fe-Mn-Al-C钢的强化主要源自于位错的切过机制。Kim等[32]对添加Si的Fe-30Mn-9Al-0.9C-0.5Mo轻质钢中κ碳化物与位错的交互作用进行了研究,若采用Orowan绕过机制对材料的屈服强度进行估算,得到的结果为3.3 GPa,远高于实际材料的屈服强度(886 MPa)。当采用切过机制计算时,得到的屈服强度计算值为1.31 GPa。虽然仍高于实际值,但已比较接近,说明位错切过机制是主导机制。对Fe-26Mn-8/10Al-1C钢退火和时效后进行变形的组织观察表明,2种轻质钢在变形过程中均呈现平面滑移,滑移过程中位错可切过碳化物;10Al实验钢中碳化物体积分数和尺寸均高于8Al实验钢,因此其强度更高,但塑性有所损失[31]

研究[94]表明,当位错与有序沉淀相相遇,其交互作用与反相畴界能有关。Yao等[95]对奥氏体基轻质钢(Fe-29.8Mn-7.7Al-1.3C)中的碳化物进行了研究,指出确定碳化物的化学计量比对于理解时效态轻质钢的应变硬化行为十分重要。他们采用3D-APT和密度泛函理论进行了研究,结果表明碳化物中的Al和C都出现了偏离化学计量比的现象。非化学计量比的存在会影响有序碳化物的反相畴界能,从而可以改变沉淀相的强化效果,因此可以通过改变碳化物的化学计量比对轻质钢的沉淀强化效果进行调控。Yao等[87]对Fe-30.4Mn-8Al-1.2C钢变形后组织的TEM和APT表征表明,在变形过程中位错可切过晶内纳米碳化物。当变形量累积到一定程度时,滑移带十分密集,滑移带中的碳化物发生破碎。在滑移带交叉处,碳化物失去有序特征,甚至发生溶解。他们还指出,当反相畴界能较高时,位错从切过机制转变为绕过机制的粒子临界半径减小。同时,由于晶内碳化物的尺寸分布并不均匀,也不排除Orowan (绕过)机制的存在。

如前所述,近年来研究者们通过在轻质钢中加入其他合金元素,引入了不可切过的沉淀相,可使材料的应变硬化能力增加。典型的例子是通过添加Ni在轻质钢中引入有序的B2相。Wang等[62]采用多成分复相钢(compositionally complex steel,CCS)的概念,设计了Fe-26Mn-16Al-5Ni-5C钢,在合金中同时引入可切过的纳米碳化物和不可切过的B2相。采用低角度环状暗场扫描透射电镜(LAADF-STEM)成像技术,对材料的变形组织进行了表征,如图4[62]所示。

图4

图4   多成分复相钢(CCS)的变形组织(应变为1.5%)[62]

Fig.4   Deformed microstructures of the compositionally complex steel (CCS) at 1.5% strain[62]

(a) LAADF-STEM image showing the dislocations (in bright contrast)

(b, c) zoom-in image of the marked region in Fig.5a (b), dislocations are highlighted by the blue arrows, austenite (γ) matrix and κ-cabide are identified by fast Fourier transform (FFT) patterns, and B2 phase is detected by EDS maps (c). Dislocations cut through γ matrix and κ-carbide, whereas the bypassing mechanism is shown for the B2 phase


图4a[62]示出了在800℃退火的模型钢变形1.5%时的显微组织。快速Fourier变换(FFT)结果确定了κ碳化物的存在(图4b[62]),EDS结果说明B2相具有富Ni富Al的特征(图4c[62])。双纳米沉淀相使材料具有超高的比强度(260 MPa/(cm3·g)),同时还具有良好的塑性。由于纳米级碳化物粒子与奥氏体呈共格关系,两相变形时具有良好的协调性,因此不容易产生裂纹。而B2相可以钉轧位错,导致局部应变硬化。在B2相粒子处塞积的位错可导致长程背应力,从而对应变硬化有进一步的贡献,使材料获得了良好的塑性。需要指出的是,当含Ni轻质钢的强度非常高时(屈服强度为1380~1680 MPa,抗拉强度为1480~1700 MPa),材料的屈强比很高(0.93~0.99)[14,61,65],不利于其实际的成形应用。因此,如何降低材料的屈强比是开发含Ni超高强钢需要解决的问题。

6 轻质钢的组织设计与性能调控

6.1 异质结构的变形行为

表1[3,7,12,16,23,30,42,87]可见,与其他轻质钢相比,文献[12]中的Fe-25.7Mn-10.6Al-1.2C钢在强度显著提升的同时呈现出良好的塑性。实验用钢强度的提升源自于奥氏体晶内存在细小弥散的κ相(图5b[12])与晶界碳化物的共同强化作用。另一方面,该轻质钢中的奥氏体呈现异构组织特征,其组织内部同时存在形变组织和再结晶组织,如图5a[12]所示。这种独特的形变/再结晶共存组织所引入的异构强化效应同样对该实验用钢的强韧化起到了重要的作用。

图5

图5   Fe-25.7Mn-10.6Al-1.2C钢的显微组织[12]

Fig.5   Misrostructures of Fe-25.7Mn-10.6Al-1.2C steel[12]

(a) EBSD characterization of the γ matrix, recry-stallizaed microstructure being illustrated by the red arrows

(b) dark-field TEM image of intragranular κ-carbide in the recrystallized grain


在异构材料中,存在着“软区”和“硬区”,这种“软”和“硬”的差异可源于微观组织、晶体结构以及化学成分上的差异。由于这些差异的存在,在变形过程中软区内会更多地累积几何必需位错,进而产生很强的异质变形(hetero-deformation induced,HDI)硬化效应[96,97]。在Fe-25.7Mn-10.6Al-1.2C轻质钢中,再结晶区的晶粒细化、未再结晶区的变形组织以及碳化物沉淀强化均能够对提高合金的强度作出贡献。而在变形过程中,再结晶/形变组织间的形变不相容性导致了应变配分,整体上提高了材料的应变硬化能力,同步提升了材料的强度和塑性。以上结果表明,异构组织(形变/再结晶或晶粒尺寸差异)的引入可与多尺度沉淀相协同作用实现对轻质钢的复合强化,并改善其塑性,这为轻质钢的组织和性能调控提供了新思路,值得深入研究和探索。

6.2 双相组织变形过程中的应变分配

在双相钢中,由于两相性质的不同,在宏观应力下各相呈现出不同的变形行为,这会导致在宏观变形条件下各相的微观应力、应变存在明显的差异,各相之间通过应力-应变协调以适应宏观的应力和应变。深入了解宏观变形过程中双相或多相材料各组成相的变形行为,并定量分析各相之间的应力-应变配分情况,对理解材料的变形行为和硬化机理十分必要。魏兴等[98]针对铁素体-马氏体双相钢,基于变形机制建立了物理模型,综合考虑晶粒尺寸和相体积分数对材料应变的影响,定量分析了宏观变形条件下各相的微观应力-应变配分,并提出了双相钢中晶粒尺寸和相体积分数控制的原则。Latypov等[99]采用有限元法对中锰钢中的TRIP和TWIP效应进行了组织模拟。结果表明,变形过程中的应力集中呈传递特征:在低应变时,变形首先在奥氏体中进行,奥氏体中的TRIP和TWIP效应引起应变硬化,使应力集中向铁素体传递。这种传递对实验用钢优良的力学性能作出了贡献。

在奥氏体基Fe-Mn-Al-C双相轻质钢中,影响双相钢性能的主要因素有铁素体相的性质、相比例、各相的晶粒尺寸、合金元素在各相中的配分及析出相等。这类轻质钢中Mn含量的范围比较宽,因此不同轻质钢的组织构成和变形行为的差异也比较大。对Fe-20Mn-9Al-0.6C双相轻质钢的研究[23]表明,在变形的初始阶段,奥氏体的强度低于铁素体,因此奥氏体承担更多的变形。然而,因奥氏体的应变硬化能力比铁素体强,随着变形的进行,2者的强度差异逐渐缩小。在变形过程中,奥氏体控制着材料的应变硬化行为。需要指出的是,目前并没有系统定量地研究分析不同相独立的变形能力与宏观力学行为的相关性。轻质钢两相变形过程中的应力-应变配分对材料的变形行为有重要的影响,但是相关的研究工作目前还很有限。

通过实验表征与模拟仿真相结合的方式可实现对Fe-Mn-Al-C双相轻质钢微观变形行为的深入揭示。晶体塑性有限元法(crystal plasticity finite element method,CPFEM)是近年来发展的能够在细观尺度下描述材料塑性变形的先进有限元分析法。该方法将多相材料塑性变形的物理机理和传统有限元法所具有的受力平衡与变形协调有机结合,可准确获知晶粒内部任意一点的局部力学响应与局部物理参量,包括应力-应变状态及各相体积分数和各相受力状态下的变化[100,101]。应用晶体塑性有限元法可准确描述各相之间的应力-应变配分,预测双相或多相材料动态变形过程中的总体本构关系以及微观组织演变。因此,在双相轻质钢变形行为的理论分析和数值模拟等方面仍有如下研究工作有待开展。

目前缺少对于双相轻质钢微观组织本征性能与宏观本构之间的相关性的研究,而这是研究双相轻质钢应力-应变分配的基础。通过采用纳米力学测试(纳米压痕、微柱压缩)、微观尺度表征(原子力显微镜、3D激光共聚焦)等实验检测技术明确各组成相精确力学属性,并结合量纲分析法、有限元模拟等理论仿真技术可实现对微观变形行为的进一步模型化理论分析。

对双相轻质钢变形过程中的应力-应变配分行为进行多尺度实验表征(原位EBSD、宏观DIC、微观DIC、ECCI),并结合跨尺度的高通量计算(第一性原理计算、分子动力学、位错动力学以及晶体塑性有限元等),从而为双相轻质钢的组织性能调控提供更完善的依据。

双相轻质钢在实际应用中可能面临更为复杂的服役条件,因此有必要通过完善并拓展传统的力学本构方程,以实现对不同应力状态、应变速率、环境温度下材料的应力-应变配分行为的多尺度力学模拟,从而为双相轻质钢在复杂服役条件下的应用提供理论指导。

7 总结与展望

在Fe-Mn-Al-C轻质钢中,Mn、Al以及C含量均较高。目前,工业界已经在轻质钢的制备与加工方面有所突破。为拓展轻质钢的实际应用领域,仍需要进一步对其进行深入的基础研究。应采用实验研究、理论分析与计算模拟相结合的方法,对其合金成分进行优化,对显微组织进行设计,并对变形的微观机制做深入的研究。为使轻质钢真正能够从实验室走向工业应用,在轻质钢的可成形性、可焊接性及其他服役性能等方面应积累足够的数据,为实际应用奠定良好的基础。

7.1 轻质钢的合金设计

在轻质钢中提高Al含量,可以提高减重潜力。但是,Al的添加会使钢材的弹性模量降低,使具有相同几何形状的构件的刚度减小。因此,Al含量应控制在一定的范围内。

在Fe-Mn-Al-C轻质钢中复合添加多种微合金元素,使材料的综合性能调控有更大的空间。应系统开展合金元素对轻质钢中析出相的性质及析出动力学影响的研究,综合利用计算模拟和微观组织的精细表征方法,分析研究各种元素在奥氏体和析出相之间的配分,揭示合金元素对析出相析出行为的影响规律,明确合金元素及微合金元素对Fe-Mn-Al-C低密度钢显微组织的影响,为合金的性能调控提供依据。

在钢的基体中原位生成高弹性模量的TiC、VC和TiB2等硬质颗粒不仅可以提高合金的强度,还可对Al引起的弹性模量降低起到一定的补偿作用。颗粒增强轻质钢复合材料的开发也是一个研究方向。

7.2 轻质钢的微观结构设计及控制

κ相或B2 (D03)相在提升Fe-Mn-Al-C轻质钢的力学性能方面可起到重要的作用。晶内κ相和晶界κ相、B2/D03相的形成条件、相间的交互作用以及如何调控有序相的形貌、尺寸及分布情况都需要进行深入的研究。不同析出相与奥氏体/铁素体间的界面类型及其对材料性能的影响也需要得到重视。添加不同的合金元素有可能对κ相的性质产生影响,当合金中还含有微合金元素的析出相时,对复合析出相强化的作用有必要进行进一步的研究。如何有效地利用这些析出相提升材料的服役性能尤其值得关注。

一般地,含有晶内κ碳化物的轻质钢具有优良的强塑性组合,但是在材料的强度得到提高后,应变硬化能力不足。如何在进一步提高强度的同时提高材料的应变硬化能力是一个需要研究的方向。应综合利用多相、多尺度的组织设计,还可利用异构组织的设计理念对微观组织进行调控,从而进一步提高材料的综合性能。

7.3 轻质钢变形机制的定量分析

轻质钢变形过程中的微观组织演变比较复杂,其变形的微观机制也与其他钢铁材料和有色金属材料不尽相同,变形过程中组织演变原位或准原位观察方面的工作尚需加强。同时,应对含有不同类型析出相的轻质钢的应变硬化行为进行对比和分析,明确应变硬化的微观机制。

在双相轻质钢中,各相之间的协调十分重要。双相钢中各相的性质不同会在变形过程中引起相间的应力-应变分配,从而影响轻质钢的变形行为。目前,对双相钢变形机制的研究还不够深入。轻质钢中可能出现α铁素体、δ铁素体或2者兼而有之。为了更精准地描述轻质钢的微观变形过程,需要通过理论和实验定量分析组成相各自的本构关系,为轻质钢的微观变形行为研究提供更为准确的模型参数和理论依据。应将组织表征与晶体塑性有限元模拟结合,对材料变形过程中两相中的微观应力和应变分配进行分析,揭示轻质钢变形过程中力学行为的变化规律,对性能进行预报,为双相轻质钢的组织设计提供依据。

7.4 轻质钢的成形和服役性能研究

为推进轻质钢的应用,还有许多成形性能方面的研究工作需要进一步进行。对于汽车用钢,需要考查材料的冲击性能和成形性能如扩孔性能和弯曲性能等,研究材料的高应变率变形行为,构建变形过程的本构方程。

对于一般的高强钢,当C含量过高时,焊接性能和成形性能均会恶化,因此碳当量是衡量钢铁材料焊接性优劣的依据。但是在Fe-Mn-Al-C轻质钢中,形成的碳化物与在常规高强钢中的碳化物并不相同,因此片面强调碳含量并没有实际意义,应对Fe-Mn-Al-C轻质钢焊接性的影响因素作出新的定义。

除了应用于一般的结构件,Fe-Mn-Al-C轻质钢还有许多潜在的应用领域,其高硬度、高耐磨性、良好的耐腐蚀性能、高温性能及抗蠕变性能均应得到足够的重视。为拓展轻质钢的应用领域,如军事、其他交通运输业和建筑行业等,应对其蠕变性能、疲劳性能、抗氢脆性能及抗氧化行为进行深入的研究。

参考文献

Chen S P, Rana R, Haldar A, et al.

Current state of Fe-Mn-Al-C low density steels

[J]. Prog. Mater Sci., 2017, 89: 345

DOI      URL     [本文引用: 4]

Ye J S.

An investigation of 15Mn26Al4 low-temperature steel

[J]. Acta. Metall. Sin., 1977, 13: 149

[本文引用: 1]

On the basis of our past research on Fe-Mn-Al system, a new Ni-Cr-free cryogenicnon-magnetic steel-15Mn26Al4 has been developed. The steel shows stable austen-ite structure and satisfactory mechanical properties. It may be used for temperaturesas low as that of liquid hydrogen without incurring embrittlement. From our own work on Fe-Mn-Al phase diagram, since aluminum can suppressmartensite type transformation of high manganse austenite steels at low temperaturesand considering that both carbon and manganese promote the stabilization of the austen-ite structure, it is deduced that the chemical composition of the above steel should bein the narrow range of C 0.13-0.19%, Mn 24.5-27.0% and Al 3.8-4.7%. Such a steelpossesses excellent ductility and impact properties together with higher strength ascompared with that of the conventional 18-8 austenitic stainless steels, although itsrustresisting property is relatively poor. The production of such steel calls for special attention, it is advised to stick to theso-called "3-high and 1-fast" practice, i. e. high smelting temperatures, high slag temper-atures and high mould temperatures with fast teeming. In hot working practice, it hasbeen found that there appeared two regions with high plasticity, 750-850℃ and 1150-1250℃. The 15Mn26Al4 steel has been successfuly fabricated into the sheets, plates, bars,wires, tubes and forgings. At the same time, suitable welding rods coated with properfluxes of different specifications have been developed. Explosion tests to failure at liquid nitrogen temperature of vessels made of 15Mn26Al4 steel were carried out, the broken vessel showed complete plastic dimple fracture,testifying that such a steel is suitable for low temperature uses.

叶基石.

15Mn26Al4低温钢的研究

[J]. 金属学报, 1977, 13: 149

[本文引用: 1]

在早期比较系统地研究铁-锰-铝系合金钢的基础上,发展了一种完全不含镍、铬的低温用新钢种——15Mn26Al4.它具有十分稳定的奥氏体组织,满意的力学性能,可在液氢温度下使用而不变脆。对照以前研究的Fe-Mn-Al系相图,考虑到铝有抑制高锰奥氏钢发生低温马氏体型相变和稳定低温组织的作用,以及锰和碳是稳定奥氏体的合金元素,通过实验确定钢的成分范围为(%):C 0.13—0.19,Mn 24.5—27.0,Al 3.8—4.7.与一般常用的1Crl8Ni9Ti不锈钢相比,15Mn26Al4钢的强度、塑性和冲击韧性等,均有显著的优越性。 在工业生产实践中,研究出“钢温高、渣温高、模温高”和“浇注快”的“三高一快”的炼钢经验;研究出压力加工工艺必须掌握750一850℃和1150—1250℃间有两个塑性区的规津,已成批生产出各种规格的板、管、棒、丝材和锻件;还研究出不同规格的焊条和焊剂,从而形成了一整套比较完整的加工工艺。 15Mn26Al4钢经制成容器在液氮温度下进行爆破试验,情况良好,表现为明显的塑性断口,是典型的韧性断裂。

Frommeyer G, Brüx U.

Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels

[J]. Steel Res. Int., 2006, 77: 627

DOI      URL     [本文引用: 9]

Liu C Q, Peng Q C, Xue Z L, et al.

Research situation of Fe-Mn-Al-C system low-density high-strength steel

[J], Mater. Rep., 2019, 33: 2572

[本文引用: 2]

刘春泉, 彭其春, 薛正良 .

Fe-Mn-Al-C系列低密度高强钢的研究现状

[J]. 材料导报, 2019, 33: 2572

[本文引用: 2]

Wang F Q, Sun T, Wang M Q, et al.

Research progress of Fe-Mn-Al-C system austenitic low density steel

[J]. Iron Steel, 2021, 56(6): 89

王凤权, 孙 挺, 王毛球 .

Fe-Mn-Al-C系奥氏体基低密度钢的研究进展

[J]. 钢铁, 2021, 56(6): 89

Man T H, Peng W, Wang Z B, et al.

Research progress and prospect of Fe-Mn-Al-C low-density steels

[J]. China Metall., 2022, 32(1): 11

[本文引用: 1]

满廷慧, 彭 伟, 王子波 .

Fe-Mn-Al-C 低密度钢研究现状及展望

[J]. 中国冶金, 2022, 32(1): 11

[本文引用: 1]

Yoo J D, Park K T.

Microband-induced plasticity in a high Mn-Al-C light steel

[J]. Mater. Sci. Eng., 2008, A496: 417

[本文引用: 9]

Yoo J D, Hwang S W, Park K T.

Factors influencing the tensile behavior of a Fe-28Mn-9Al-0.8C steel

[J]. Mater. Sci. Eng., 2009, A508: 234

Park K T, Jin K G, Han S H, et al.

Stacking fault energy and plastic deformation of fully austenitic high manganese steels: Effect of Al addition

[J]. Mater. Sci. Eng., 2010, A527: 3651

Park K T.

Tensile deformation of low-density Fe-Mn-Al-C austenitic steels at ambient temperature

[J]. Scr. Mater., 2013, 68: 375

DOI      URL     [本文引用: 2]

Gutierrez-Urrutia I, Raabe D.

High strength and ductile low density austenitic FeMnAlC steels: Simplex and alloys strengthened by nanoscale ordered carbides

[J]. Mater. Sci. Technol., 2014, 30: 1099

DOI      URL     [本文引用: 1]

Zhang J L, Raabe D, Tasan C C.

Designing duplex, ultrafine-grained Fe-Mn-Al-C steels by tuning phase transformation and recrystallization kinetics

[J]. Acta Mater., 2017, 141: 374

DOI      URL     [本文引用: 10]

Dong X Z, Wang D, Thoudden-Sukumar P, et al.

Hydrogen-associated decohesion and localized plasticity in a high-Mn and high-Al two-phase lightweight steel

[J]. Acta Mater., 2022, 239: 118296

DOI      URL     [本文引用: 1]

Hwang J H, Trang T T T, Lee O, et al.

Improvement of strength- ductility balance of B2-strengthened lightweight steel

[J]. Acta Mater., 2020, 191: 1

DOI      URL     [本文引用: 7]

Zhang L F, Song R B, Zhao C, et al.

Work hardening behavior involving the substructural evolution of an austenite-ferrite Fe-Mn-Al-C steel

[J]. Mater. Sci. Eng., 2015, A640: 225

[本文引用: 1]

Ding H, Han D, Zhang J, et al.

Tensile deformation behavior analysis of low density Fe-18Mn-10Al-xC steels

[J]. Mater. Sci. Eng., 2016, A652: 69

[本文引用: 5]

Zhao C, Song R B, Zhang L F, et al.

Effect of annealing temperature on the microstructure and tensile properties of Fe-10Mn-10Al-0.7C low-density steel

[J]. Mater. Des., 2016, 91: 348

DOI      URL    

Ren P, Chen X P, Cao Z X, et al.

Synergistic strengthening effect induced ultrahigh yield strength in lightweight Fe-30Mn-11Al-1.2C steel

[J]. Mater. Sci. Eng., 2019, A752: 160

Zhang J L, Hu C H, Zhang Y H, et al.

Microstructures, mechanical properties and deformation of near-rapidly solidified low-density Fe-20Mn-9Al-1.2C-xCr steels

[J]. Mater. Des., 2020, 186: 108307

DOI      URL     [本文引用: 5]

Ren P, Chen X P, Wang C Y, et al.

Effects of pre-strain and two-step aging on microstructure and mechanical properties of Fe-30Mn-11Al-1.2C austenitic low-density steel

[J]. Acta. Metall. Sin., 2022, 58: 771

DOI      [本文引用: 1]

Lightweight Fe-Mn-Al-C steels are promising candidates for automobile structural materials and have gained increased scientific and commercial interest owing to their outstanding mechanical properties and low density. To date, several studies have been conducted to illustrate the mechanism of phase transformation, strengthening, and strain hardening under solution and aging state. Moreover, prestrain before aging as a low-cost and simple method to tailor precipitates and control properties has been widely reported; however, it has been barely investigated in the Fe-Mn-Al-C alloy system. Therefore, in this study, the effects of pre-cold rolling and two-step aging on the microstructure and mechanical properties of Fe-30Mn-11Al-1.2C (mass fraction, %) austenitic low-density steel are investigated using EBSD, TEM, and universal testing machine. Results showed that the yield strength (YS) significantly increased via the two-step aging from 580 MPa (at solution state) to 1120 MPa, but the uniform elongation (UE) sharply decreased to approximately 0. However, after the pre-cold rolling and two-step aging, the YS of the material further improved to 1220 MPa, and the UE significantly increased to 18.2%, which implies an improvement in the comprehensive mechanical properties of the material. According to the microstructure analysis, the increase in YS after the two-step aging was caused by the ordering strengthening effect of κ' carbide. Further, the pre-cold rolling could introduce heterogeneous nucleation sites, inducing intragranular precipitation. The combination of the precipitation strengthening of the precipitates and deformation strengthening induced via the pre-cold rolling further increased the YS of the material. Moreover, these intragranular precipitates could improve the work hardening capability, which is the root cause of the high plasticity of materials. This process provides a novel idea for improving the performance of austenitic low-density steels.

任 平, 陈兴品, 王存宇 .

预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响

[J]. 金属学报, 2022, 58: 771

[本文引用: 1]

Chen P, Zhang Q C, Zhang F, et al.

Critical role of κ-carbides in the multi-stage work hardening process of a lightweight austenitic steel

[J]. Mater. Charact., 2023, 200: 112853

DOI      URL     [本文引用: 1]

Wang H, Cao Z X, Gao Z Y, et al.

Synergetic strengthening from dynamic slip band-grain boundary interaction in a low-density FeMnAlC steel

[J]. Mater. Sci. Eng., 2023, A862: 144498

[本文引用: 2]

Hwang S W, Ji J H, Lee E G, et al.

Tensile deformation of a duplex Fe-20Mn-9Al-0.6C steel having the reduced specific weight

[J]. Mater. Sci. Eng., 2011, A528: 5196

[本文引用: 7]

Sutou Y, Kamiya N, Umino R, et al.

High-strength Fe-20Mn-Al-C-based alloys with low density

[J]. ISIJ Int., 2010, 50: 893

DOI      URL     [本文引用: 1]

Sohn S S, Song H, Suh B C, et al.

Novel ultra-high-strength (ferrite + austenite) duplex lightweight steels achieved by fine dislocation substructures (Taylor lattices), grain refinement, and partial recrystallization

[J]. Acta Mater., 2015, 96: 301

DOI      URL    

Etienne A, Massardier-Jourdan V, Cazottes S, et al.

Ferrite effects in Fe-Mn-Al-C triplex steels

[J]. Metall. Mater. Trans., 2014, 45A: 324

[本文引用: 1]

Sohn S S, Lee B J, Lee S, et al.

Effect of annealing temperature on microstructural modification and tensile properties in 0.35C-3.5Mn-5.8Al lightweight steel

[J]. Acta Mater., 2013, 61: 5050

DOI      URL     [本文引用: 1]

Ko K K, Bae H J, Park E H, et al.

A feasible route to produce 1.1 GPa ferritic-based low-Mn lightweight steels with ductility of 47%

[J]. J. Mater. Sci. Technol., 2022, 117: 225

DOI     

High- and medium-Mn (H/M-Mn) base lightweight steels are a class of ultrastrong structural materials with high ductility compared to their low-Mn counterparts with low strength and poor ductility. However, producing these H/M-Mn materials requires the advanced or high-tech manufacturing techniques, which can unavoidably provoke labor and cost concerns. Herein, we have developed a facile strategy that circumvents the strength-ductility trade-off in low-Mn ferritic lightweight steels, by employing low-temperature tempering-induced partitioning (LTP). This LTP treatment affords a typical Fe-2.8Mn-5.7Al-0.3C (wt.%) steel with a heterogeneous size-distribution of metastable austenite embedded in a ferrite matrix for partitioning more carbon into smaller austenite grains than into the larger austenite ones. This size-dependent partitioning results in slip plane spacing modification and lattice strain, which act through dislocation engineering. We ascribe the simultaneous improvement in strength and total elongation to both the size-dependent dislocation movement in austenite grains and the controlled deformation-induced martensitic transformation. The low-carbon-partitioned large austenite grains increase the strength and ductility as a consequence of the combined martensitic transformation and high dislocation density-induced hardening and by interface strengthening. Additionally, high-carbon-partitioned small austenite grains enhance the strength and ductility by planar dislocation glide (in the low strain regime) and by cross-slipping and delayed martensitic transformation (in the high strain regime). The concept of size-dependent dislocation engineering may provide different pathways for developing a wide range of heterogeneous-structured low-Mn lightweight steels, suggesting that LTP may be desirable for broad industrial applications at an economic cost.

Seo C H, Kwon K H, Choi K, et al.

Deformation behavior of ferrite-austenite duplex lightweight Fe-Mn-Al-C steel

[J]. Scri. Mater., 2012, 66: 519

DOI      URL     [本文引用: 1]

Ha M C, Koo J M, Lee J K, et al.

Tensile deformation of a low density Fe-27Mn-12Al-0.8C duplex steel in association with ordered phases at ambient temperature

[J]. Mater. Sci. Eng., 2013, A586: 276

[本文引用: 12]

Wu Z Q.

Investigations on the microstructures-properties relationship and deformation mechanism in high strength and high ductility low density steels

[D]. Shenyang: Northeastern University, 2015

[本文引用: 6]

吴志强.

高强度高塑性低密度钢的组织性能和变形机制研究

[D]. 沈阳: 东北大学, 2015

[本文引用: 6]

Kim C W, Kwon S I, Lee B H, et al.

Atomistic study of nano-sized κ-carbide formation and its interaction with dislocations in a cast Si added FeMnAlC lightweight steel

[J]. Mater. Sci. Eng., 2016, A673: 108

[本文引用: 5]

Choo W K, Kim J H, Yoon J C.

Microstructural change in austenitic Fe-30.0wt% Mn-7.8wt% Al-1.3wt% C initiated by spinodal decomposition and its influence on mechanical properties

[J]. Acta Mater., 1997, 45: 4877

DOI      URL    

Wang C S, Hwang C N, Chao C G, et al.

Phase transitions in an Fe-9Al-30Mn-2.0C alloy

[J]. Scr. Mater., 2007, 57: 809

DOI      URL    

Sato K, Tagawa K, Inoue Y.

Age hardening of an Fe-30Mn-9Al-0.9C alloy by spinodal decomposition

[J]. Scr. Metall., 1988, 22: 899

DOI      URL    

Choi K, Seo C H, Lee H, et al.

Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe-28Mn-9Al-0.8C steel

[J]. Scr. Mater., 2010, 63: 1028

DOI      URL     [本文引用: 2]

Chang K M, Chao C G, Liu T F.

Excellent combination of strength and ductility in an Fe-9Al-28Mn-1.8C alloy

[J]. Scr. Mater., 2010, 63: 162

DOI      URL    

Han K H, Yoon J C, Choo W K.

TEM evidence of modulated structure in Fe-Mn-Al-C austenitic alloys

[J]. Scr. Metall., 1986, 20: 33

DOI      URL    

Cheng W C, Cheng C Y, Hsu C W, et al.

Phase transformation of the L12 phase to kappa-carbide after spinodal decomposition and ordering in an Fe-C-Mn-Al austenitic steel

[J]. Mater. Sci. Eng., 2015, A642: 128

[本文引用: 2]

Wang Z W, Lu W J, Zhao H, et al.

Formation mechanism of κ-carbides and deformation behavior in Si-alloyed FeMnAlC lightweight steels

[J]. Acta Mater., 2020, 198: 258

DOI      URL     [本文引用: 8]

Zhang J L, Jiang Y S, Zheng W S, et al.

Revisiting the formation mechanism of intragranular κ-carbide in austenite of a Fe-Mn-Al-Cr-C low-density steel

[J]. Scr. Mater., 2021, 199: 113836

DOI      URL     [本文引用: 1]

Liu D G, Cai M H, Ding H, et al.

Control of inter/intra-granular κ-carbides and its influence on overall mechanical properties of a Fe-11Mn-10Al-1.25C low density steel

[J]. Mater. Sci. Eng., 2018, A715: 25

[本文引用: 6]

Liu D G, Ding H, Cai M H, et al.

Mechanical behaviors of a lower-Mn-added Fe-11Mn-10Al-1.25C lightweight steel with distinguished microstructural features

[J]. Mater. Lett., 2019, 242: 131

DOI      URL     [本文引用: 8]

Liu D G, Ding H, Han D, et al.

Effect of grain interior and grain boundary κ-carbides on the strain hardening behavior of medium-Mn lightweight steels

[J]. Mater. Sci. Eng., 2023, A871: 144861

[本文引用: 3]

Ishida K, Ohtani H, Satoh N, et al.

Phase equilibria in Fe-Mn-Al-C alloys

[J]. ISIJ Int., 1990, 30: 680

DOI      URL     [本文引用: 3]

Kim M S, Kang Y B.

Development of thermodynamic database for high Mn-high Al steels: Phase equilibria in the Fe-Mn-Al-C system by experiment and thermodynamic modeling

[J]. Calphad, 2015, 51: 89

DOI      URL     [本文引用: 2]

Chin K G, Lee H J, Kwak J H, et al.

Thermodynamic calculation on the stability of (Fe, Mn)3AlC carbide in high aluminum steels

[J]. J. Alloys Compd., 2010, 505: 217

DOI      URL     [本文引用: 2]

Fartushna I, Bajenova I, Khvan A, et al.

Experimental investigation of solidification and isothermal sections at 1000 and 1100oC in the Al-Fe-Mn-C system with special attention to the kappa-phase

[J]. J. Alloys Compd., 2018, 735: 1211

DOI      URL     [本文引用: 2]

Rahnama A, Dashwood R, Sridhar S.

A phase-field method coupled with CALPHAD for the simulation of ordered κ-carbide precipitates in both disordered γ and α phases in low density steel

[J]. Comput. Mater. Sci., 2017, 126: 152

[本文引用: 1]

Song W W, Zhang W, von Appen J, et al.

κ-phase formation in Fe-Mn-Al-C austenitic steels

[J]. Steel Res. Int., 2015, 86: 1161

DOI      URL     [本文引用: 1]

Drouven C, Hallstedt B, Song W, et al.

Experimental observation of κ-phase formation sequences by in-situ synchrotron diffraction

[J]. Mater. Lett., 2019, 241: 111

DOI     

In-situ annealing experiments using synchrotron diffraction depict the separation of {1 0 0}-superlattice peaks ascribed to C-enrichment of pre-existing, C-lean L'1(2)-ordered structures into C-rich kappa-carbides of alike crystal structure during heating of a high-Al lightweight steel. The peak separation is the first experimental in-situ investigation of the transformation sequence during Fe3AlC-phase formation. A detailed analysis of the lattice parameter evolution and thermal expansion behavior was carried out to validate the assignment of phases by comparison with theoretical calculations and available experimental data. (C) 2019 Elsevier B.V.

Dey P, Nazarov R, Dutta B, et al.

Ab initio explanation of disorder and off-stoichiometry in Fe-Mn-Al-C κ carbides

[J]. Phys. Rev., 2017, 95B: 104108

[本文引用: 3]

Liu L B, Li C M, Yang Y, et al.

A simple method to produce austenite-based low-density Fe-20Mn-9Al-0.75C steel by a near-rapid solidification process

[J]. Mater. Sci. Eng., 2017, A679: 282

[本文引用: 1]

Ma T, Li H R, Gao J X, et al.

Effect of alloying elements and aging treatment on the properties of kappa-carbide in Fe-Mn-Al-C low density steesl: A review

[J]. Mater. Rep., 2020, 34: 11153

[本文引用: 1]

马 涛, 李慧蓉, 高建新 .

合金元素及时效处理对Fe-Mn-Al-C低密度钢中κ-碳化物的影响特性综述

[J]. 材料导报, 2020, 34: 11153

[本文引用: 1]

Han D, Ding H, Liu D G, et al.

Influence of C content and annealing temperature on the microstructures and tensile properties of Fe-13Mn-8Al-(0.7, 1.2)C steels

[J]. Mater. Sci. Eng., 2020, A785:139286

[本文引用: 1]

Chen X P, Li W J, Ren P, et al.

Effects of C content on microstructure and properties of Fe-Mn-Al-C low-density steels

[J]. Acta Metall. Sin., 2019, 55: 951

[本文引用: 1]

陈兴品, 李文佳, 任 平 .

C含量对Fe-Mn-Al-C低密度钢组织和性能的影响

[J]. 金属学报, 2019, 55: 951

DOI      [本文引用: 1]

采用EBSD、TEM、XRD和万能试验机等对比研究了4种Fe-30Mn-10Al-xC (x=0.53、0.72、1.21、1.68,质量分数,%)低密度钢固溶处理后的微观组织与力学性能。结果表明,随着C含量的增加,奥氏体的体积分数逐渐增多,显微结构由铁素体/奥氏体双相组织逐渐演变为单相奥氏体组织,钢的强度不断增加,而延伸率则先增加后减小。统计分析表明,奥氏体的应变协调能力高于铁素体,双相钢随着奥氏体含量的增加,延展性明显增加,强度略微增加;而对于单相奥氏体钢,随着C含量的增加,屈服强度明显增加,延展性变差,加工硬化能力显著降低,这是由于钢中κ′碳化物的析出造成的。

Li M C, Chang H, Kao P W, et al.

The effect of Mn and Al contents on the solvus of κ phase in austenitic Fe-Mn-Al-C alloys

[J]. Mater. Chem. Phys., 1999, 59: 96

DOI      URL     [本文引用: 1]

Huang H, Gan D, Kao P W.

Effect of alloying additions on the κ phase precipitation in austenitic Fe-Mn-Al-C alloys

[J]. Scr. Metall. Mater., 1994, 30: 499

DOI      URL     [本文引用: 1]

Kim S H, Kim H, Kim N J.

Brittle intermetallic compound makes ultrastrong low-density steel with large ductility

[J]. Nature, 2015, 518: 77

DOI      [本文引用: 5]

Zhang B G, Zhang X M, Liu H T.

Precipitation behavior of B2 and κ-carbide during aging and its effect on mechanical properties in Al-containing high strength steel

[J]. Mater. Charact., 2021, 178: 111291

DOI      URL     [本文引用: 1]

Kim C, Hong H U, Jang J H, et al.

Reverse partitioning of Al from κ-carbide to the γ-matrix upon Ni addition and its strengthening effect in Fe-Mn-Al-C lightweight steel

[J]. Mater. Sci. Eng., 2021, A820: 141563

[本文引用: 2]

Wang Z W, Lu W J, Zhao H, et al.

Ultrastrong lightweight compositionally complex steels via dual-nanoprecipitation

[J]. Sci. Adv., 2020, 6: eaba9543

DOI      URL     [本文引用: 7]

Novel dual-nanoprecipitation enables ultrahigh specific strength of new ductile, lightweight compositionally complex steels.

Park G, Nam C H, Zargaran A, et al.

Effect of B2 morphology on the mechanical properties of B2-strengthened lightweight steels

[J]. Scr. Mater., 2019, 165: 68

DOI      URL     [本文引用: 3]

Mishra B, Sarkar R, Singh V, et al.

Microstructure and deformation behaviour of austenitic low-density steels: The defining role of B2 intermetallic phase

[J]. Materialia, 2021, 20: 101198

DOI      URL    

Yang M X, Yuan F P, Xie Q G, et al.

Strain hardening in Fe-16Mn-10Al-0.86C-5Ni high specific strength steel

[J]. Acta Mater., 2016, 109: 213

DOI      URL     [本文引用: 1]

Rahnama A, Spooner S, Sridhar S.

Control of intermetallic nano-particles through annealing in duplex low density steel

[J]. Mater. Lett., 2017, 189: 13

DOI      URL     [本文引用: 1]

Bartlett L N, Van Aken D C, Medvedeva J, et al.

An atom probe study of kappa carbide precipitation and the effect of silicon addition

[J]. Metall. Mater. Trans., 2014, 45A: 2421

[本文引用: 2]

Kim C W, Terner M, Lee J H, et al.

Partitioning of C into κ-carbidesby Si addition and its effect on the initial deformation mechanism of Fe-Mn-Al-C lightweight steels

[J]. J. Alloys Compd., 2019, 775: 554

DOI      URL     [本文引用: 2]

Zhi H H, Li J S, Li W M, et al.

Simultaneously enhancing strength-ductility synergy and strain hardenability via Si-alloying in medium-Al FeMnAlC lightweight steels

[J]. Acta Mater., 2023, 245: 118611

DOI      URL     [本文引用: 5]

Yang L, Li Z M, Li X, et al.

An enhanced Fe-28Mn-9Al-0.8C lightweight steel by coprecipitation of nanoscale Cu-rich and κ-carbide particles

[J]. Steel Res. Int., 2020, 91: 1900665

DOI      URL     [本文引用: 2]

Chen Z, Liu M X, Zhang J K, et al.

Effect of annealing treatment on microstructures and properties of austenite-based Fe-28Mn-9Al-0.8C lightweight steel with addition of Cu

[J]. China Foundry, 2021, 18: 207

DOI      [本文引用: 4]

The mechanical properties of an austenite-based Fe-Mn-Al-C lightweight steel were improved by co-precipitation of nanoscale Cu-rich and κ-carbide particles. The Fe-28Mn-9Al-0.8C-(0,3)Cu (wt.%) strips were near-rapidly solidified and annealed in the temperature range from 500 ℃ to 700 ℃. The microstructure evolution and mechanical properties of the steel under different annealing processes were studied. Microstructural analysis reveals that nanoscale κ-carbides and Cu-rich particles precipitate in the austenite and ferrite of the steel in this annealing temperature range. Co-precipitation of nanoscale Cu-rich particles and κ-carbides provides an obvious increment in the yield strength. At the annealing temperature of 600 ℃, both the yield strength and ultimate tensile strength of Fe-28Mn-9Al-0.8C-3Cu (wt.%) steel strip are the highest. The total elongation is 25%, which is obviously higher than that of Cu-free steel strips, for the addition of Cu reduces the large sized κ-carbides precipitated along austenite/ferrite interfaces. When the annealing temperature rises to 700 ℃, the strength and ductility of the two steel strips deteriorate due to the formation of massive intergranular κ-carbides precipitated along austenite/ferrite interfaces. It can be concluded that a proper co-precipitation of Cu-rich particles and κ-carbides would improve the properties of austenite-based Fe-Mn-Al-C steel.

Xie Z Q, Hui W J, Zhang Y J, et al.

Effect of Cu and solid solution temperature on microstructure and mechanical properties of Fe-Mn-Al-C low-density steels

[J]. J. Mater. Res. Technol., 2022, 18: 1307

DOI      URL    

Song H, Yoo J, Kim S H, et al.

Novel ultra-high-strength Cu-containing medium-Mn duplex lightweight steels

[J]. Acta Mater., 2017, 135: 215

DOI      URL     [本文引用: 4]

Han K H.

The microstructures and mechanical properties of an austenitic Nb-bearing Fe-Mn-Al-C alloy processed by controlled rolling

[J]. Mater. Sci. Eng., 2000, A279: 1

[本文引用: 1]

Park B H, Kim C W, Lee K W, et al.

Role of Nb addition on microstructural stability and deformation behaviors of FeMnAlC lightweight steels at 400oC

[J]. Metall. Mater. Trans., 2021, 52A: 4191

[本文引用: 1]

Ma T, Gao J X, Li H R, et al.

Microband-induced plasticity in a Nb content Fe-28Mn-10Al-C low density steel

[J]. Metals, 2021, 11: 345

DOI      URL    

Novel Fe–28Mn–10Al–C–0.5Nb low-density steel was developed and the room temperature tensile behavior in the solid solution state and the microstructure evolution process during plastic deformation were studied, aiming to clarify the dominant deformation mechanisms. The results show that the developed steel was fully austenitic with a low density of 6.63 g/cm3 and fairly high stacking fault energy of 84 MJ/m2. The present fully austenitic Fe–28Mn–10Al–C–0.5Nb low-density steel exhibited an excellent ultimate tensile strength of 1084 MPa and elongation of 37.5%; in addition, the steel exhibited an excellent combination of strength and ductility (i.e., the product of strength and ductility (PSE) could reach as high as 40.65 GPa%). In spite of the high stacking fault energy, deformed microstructures exhibited planar glide characteristics, seemingly due to the glide plane softening effect. The excellent combination of strength and ductility is attributed to plasticity induced by microbands and leads to the continuous strain hardening during deformation at room temperature. Moreover, the addition of Nb does not change the deformation mechanism and strengthening mechanism of Fe–Mn–Al–C low-density steel, and can optimize the mechanical properties of the steel.

Liu M X, Li X, Zhang Y H, et al.

Multiphase precipitation and its strengthening mechanism in a V-containing austenite-based low density steel

[J]. Intermetallics, 2021, 134: 107179

DOI      URL     [本文引用: 1]

Liu M X, Li X, Zhang Y H, et al.

Precipitation of κ-carbide in a V-containing austenite-based lightweight steel

[J]. Metall. Mater. Trans., 2022, 53A: 1231

Hu X L, Li Y L, Liu D G, et al.

Mechanical behavior of Fe-12Mn-7Al-0.6C-(V) lightweight steels

[J]. China Metall., 2019, 29(2): 39

[本文引用: 2]

胡小龙, 李英龙, 刘德罡 .

Fe-12Mn-7Al-0.6C-(V)轻质钢力学行为

[J]. 中国冶金, 2019, 29(2): 39

[本文引用: 2]

Moon J, Ha H Y, Kim K W, et al.

A new class of lightweight, stainless steels with ultra-high strength and large ductility

[J]. Sci. Rep., 2020, 10: 12140

DOI      PMID      [本文引用: 5]

Steel is the global backbone material of industrialized societies, with more than 1.8 billion tons produced per year. However, steel-containing structures decay due to corrosion, destroying annually 3.4% (2.5 trillion US$) of the global gross domestic product. Besides this huge loss in value, a solution to the corrosion problem at minimum environmental impact would also leverage enhanced product longevity, providing an immense contribution to sustainability. Here, we report a leap forward toward this aim through the development of a new family of low-density stainless steels with ultra-high strength (> 1 GPa) and high ductility (> 35%). The alloys are based on the Fe-(20-30)Mn-(11.5-12.0)Al-1.5C-5Cr (wt%) system and are strengthened by dispersions of nano-sized FeAlC-type κ-carbide. The alloying with Cr enhances the ductility without sacrificing strength, by suppressing the precipitation of κ-carbide and thus stabilizing the austenite matrix. The formation of a protective Al-rich oxide film on the surface lends the alloys outstanding resistance to pitting corrosion similar to ferritic stainless steels. The new alloy class has thus the potential to replace commercial stainless steels as it has much higher strength at similar formability, 17% lower mass density and lower environmental impact, qualifying it for demanding lightweight, corrosion resistant, high-strength structural parts.

Tuan Y H, Wang C S, Tsai C Y, et al.

Corrosion behaviors of austenitic Fe-30Mn-7Al-xCr-1C alloys in 3.5%NaCl solution

[J]. Mater. Chem. Phys., 2009, 114: 595

DOI      URL    

Huang C F, Ou K L, Chen C S, et al.

Research of phase transformation on Fe-8.7Al-28.3Mn-1C-5.5Cr alloy

[J]. J. Alloys Compd., 2009, 488: 246

DOI      URL     [本文引用: 1]

Moon J, Park S J, Jang J H, et al.

Atomistic investigations of κ-carbide precipitation in austenitic Fe-Mn-Al-C lightweight steels and the effect of Mo addition

[J]. Scr. Mater., 2017, 127: 97

DOI      URL     [本文引用: 1]

Chen C S, Lin C T, Peng P W, et al.

Effects of cobalt content on the microstructures of Fe-9Al-30Mn-1C-xCo alloys

[J]. J. Alloys Compd., 2010, 493: 346

DOI      URL     [本文引用: 1]

Zhao T, Chen C, Wang Y F, et al.

Effect of Nb-V microalloying on low-cycle fatigue property of Fe-Mn-Al-C austenitic steel

[J]. J. Mater. Res. Technol., 2023, 23: 3711

DOI      URL     [本文引用: 1]

Moon J, Jo H H, Park S J, et al.

Ti-bearing lightweight steel with large high temperature ductility via thermally stable multi-phase microstructure

[J]. Mater. Sci. Eng., 2021, A808: 140954

[本文引用: 1]

Yao M J, Welsch E, Ponge D, et al.

Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel

[J]. Acta Mater., 2017, 140: 258

DOI      URL     [本文引用: 7]

Cheng X N, Dai Q X, Wang A D.

Stacking-fault energy and ε-martensite transformation of austenitic steels

[J]. J. Iron Steel Res., 2003, 15(2): 55

DOI      URL     [本文引用: 1]

程晓农, 戴起勋, 王安东.

奥氏体钢层错能与ε马氏体相变

[J]. 钢铁研究学报, 2003, 15(2): 55

[本文引用: 1]

Park K T, Kim G, Kim S K, et al.

On the transitions of deformation modes of fully austenitic steels at room temperature

[J]. Met. Mater. Int., 2010, 16: 1

DOI      URL     [本文引用: 1]

Byun T S.

On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels

[J]. Acta Mater., 2003, 51: 3063

DOI      URL     [本文引用: 1]

Welsch E, Ponge D, Hafez Haghighat S M, et al.

Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel

[J]. Acta Mater., 2016, 116: 188

DOI      URL     [本文引用: 2]

Ding H, Li H Y, Wu Z Q, et al.

Microstructural evolution and deformation behaviors of Fe-Mn-Al-C steels with different stacking fault energies

[J]. Steel Res. Int., 2013, 84: 1288

DOI      URL     [本文引用: 3]

Haase C, Zehnder C, Ingendahl T, et al.

On the deformation behavior of κ-carbide-free and κ-carbide-containing high-Mn light-weight steel

[J]. Acta Mater., 2017, 122: 332

DOI      URL     [本文引用: 3]

Ardell A J, Huang J C.

Antiphase boundary energies and the transition from shearing to looping in alloys strengthened by ordered precipitates

[J]. Philos. Mag. Lett., 1988, 58: 189

DOI      URL     [本文引用: 1]

Yao M J, Dey P, Seol J B, et al.

Combined atom probe tomography and density functional theory investigation of the Al off-stoichiometry of κ-carbides in an austenitic Fe-Mn-Al-C low density steel

[J]. Acta Mater., 2016, 106: 229

DOI      URL     [本文引用: 1]

Wu X L, Zhu Y T.

Heterogeneous materials: A new class of materials with unprecedented mechanical properties

[J]. Mater. Res. Lett., 2017, 5: 527

DOI      URL     [本文引用: 1]

Wu X L, Zhu Y T.

Heterostructured metallic materials: Plastic deformation and strain hardening

[J]. Acta Metall. Sin., 2022, 58: 1349

DOI      [本文引用: 1]

Strong and tough metallic materials are desired for light-weight structural applications in transportation and aerospace industries. Recently, heterostructures have been found to possess unprecedented strength-and-ductility synergy, which is until now considered impossible to achieve. Heterostructured metallic materials comprise heterogeneous zones with dramatic variations (> 100%) particularly in mechanical properties. The interaction in these hetero-zones produces a synergistic effect wherein the integrated property exceeds the prediction by the rule-of-mixtures. More importantly, the heterostructured materials can be produced by current industrial facilities at large scale and low cost. The superior properties of heterostructured materials are attributed to the heterodeformation induced (HDI) strengthening and strain hardening, which is produced by the piling-up of geometrically necessary dislocations (GNDs). These GNDs are needed to accommodate the strain gradient near hetero-zone boundaries, across which there is high mechanical incompatibility and strain partitioning. This paper classifies the types of heterostructures and delineates the deformation behavior and mechanisms of heterostructured materials.

武晓雷, 朱运田.

异构金属材料及其塑性变形与应变硬化

[J]. 金属学报, 2022, 58: 1349

DOI      [本文引用: 1]

金属材料异构(heterostructure)是将具有显著流变应力差异的软硬相间区域作为基元进行有序构筑而成的微观组织,是旨在提高应变硬化能力和拉伸塑性的微结构设计策略,迄今应用于各种金属结构材料并获得了强度与塑性/韧性等力学性能的优异匹配。异构策略的出发点是其特征的力学响应,即塑性变形时在异构基元界面形成的应变梯度,异构的特征应力应变响应是力学迟滞环。相比均质结构中主导的林位错塑性和林硬化,异构为了协调界面应变梯度而产生几何必需位错,新增了基于几何必需位错的异质塑性变形并引起额外的应变硬化与额外的强化。本文综述了近期异构金属材料的研究进展,首先定义了异构中基元并据此把异构分类为基元异构、亚基元异构以及复合异构,随后分析并讨论了异构塑性变形时界面和位错等微结构演化,以及异质塑性变形、应变硬化和强化行为,最后展望了异构提升宏观力学性能匹配的潜力。

Wei X, Fu L M, Liu S C, et al.

Deformation behavior of constituent phases and the affected factors in dual-phase steel

[J]. Chin. J. Mater. Res., 2013, 27: 665

[本文引用: 1]

A physical model has been established to predict the stress-strain relations during the deformation of the two-phase materials, in which the effect of grain size and volume fraction of the phases on the change in strain and stress are completely considered. The predictions are good agreement with the experimental results. The micro-stress-strain partitioning between martensite (hard phase) and ferrite (soft phase) was quantitatively analyzed in the martensite-ferrite dual-phase steel. It is shown that the grain size and volume fraction greatly influence the stress-strain partitioning of the constituent phases. The stress ratio of the hard to soft phase decreases with the increase of the hard phase volume fraction. The strain ratio of the soft to hard phase increases before the plastic deformation of the hard phase starts when the relative macro-strains is applied. However with the macroscopic strain increasing, the hard phase begins to plastically deform and the strain ratio gradually reduces and eventually approaches to a constant. And the steel with relatively higher volume fraction of the hard phase has the relatively smaller constant value. In the case of a definite volume fraction, increasing the relative grain size of the hard phase contributes to the increase of the overall plasticity of the steel, while reducing the relative grain size of the hard phase helps to improve the overall strength of the steel. The optimal performance of the steel is achieved only when the grain size ratio of hard to soft phase is controlled within an appropriate range where each of constituent phases plays its most potential value.

魏 兴, 付立铭, 刘世昌 .

双相钢组成相的变形行为及其影响因素

[J]. 材料研究学报, 2013, 27: 665

[本文引用: 1]

Latypov M I, Shin S, De Cooman B C, et al.

Micromechanical finite element analysis of strain partitioning in multiphase medium manganese TWIP + TRIP steel

[J]. Acta Mater., 2016, 108: 219

DOI      URL     [本文引用: 1]

Lim H, Dingreville R, Deibler L A, et al.

Investigation of grain-scale microstructural variability in tantalum using crystal plasticity-finite element simulations

[J]. Comput. Mater. Sci., 2016, 117: 437

DOI      URL     [本文引用: 1]

Tasan C C, Diehl M, Yan D, et al.

Integrated experimental-simulation analysis of stress and strain partitioning in multiphase alloys

[J]. Acta Mater., 2014, 81: 386

DOI      URL     [本文引用: 1]

/