Please wait a minute...
金属学报  2023, Vol. 59 Issue (8): 1015-1026    DOI: 10.11900/0412.1961.2023.00108
  综述 本期目录 | 过刊浏览 |
结构功能一体化高锰减振钢研究发展概况
陈礼清1(), 李兴2, 赵阳3, 王帅1, 冯阳1
1东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819
2北京航空航天大学 合肥创新研究院 合肥 230012
3东北大学 材料科学与工程学院 沈阳 110819
Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function
CHEN Liqing1(), LI Xing2, ZHAO Yang3, WANG Shuai1, FENG Yang1
1State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
2Hefei Innovation Research Institute, Beihang University, Hefei 230012, China
3School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
引用本文:

陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
Liqing CHEN, Xing LI, Yang ZHAO, Shuai WANG, Yang FENG. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. Acta Metall Sin, 2023, 59(8): 1015-1026.

全文: PDF(2659 KB)   HTML
摘要: 

阻尼材料主要通过内耗把振动能转化为其他形式的能量而减少振动和噪声,这种从材料本身入手来实现减振降噪的方法最为直接和有效。作为一种新兴的结构功能一体化钢铁材料,高锰减振钢依靠其大量的ε马氏体和层错等作为阻尼源而呈现突出的阻尼特性,在力学性能、成本以及适用范围等方面也具有独特的综合优势。结合团队前期取得的研究结果,本文主要对高锰减振钢的国内外研究和发展情况进行综述。首先,对高锰减振钢的微观组织特征进行介绍,分析热与变形诱导条件下奥氏体、ε马氏体和α'马氏体间的相互转变行为;其次,总结了高锰减振钢的力学行为与加工硬化机制以及阻尼性能和机理,对比几种强化机制对于力学性能的影响规律,并阐明了影响高锰减振钢阻尼性能的关键性因素;最后,指出了高锰减振钢研发过程中存在的问题,并对未来的研究进行展望。

关键词 高锰减振钢微观组织加工硬化行为力学性能阻尼机理    
Abstract

Vibration and noise are considered as public hazards that can affect the daily life of people. The use of additional sound insulation devices or curing of components by design can reduce certain vibration and noise; however, these methods are greatly limited by weight, cost, and vibration-damping effect. Damping materials primarily convert vibration energy into other forms of energy through internal friction to reduce vibration and noise, which is the most direct and effective way to reduce vibration and noise from the material itself. As a new structurally and functionally integrated ferrous material, low-stacking-fault-energy and high-manganese transformation-induced plasticity steel has outstanding damping characteristics based on a large number of ε-martensite and stacking faults as damping sources. It also has unique comprehensive advantages in mechanical properties, cost, and scope of application, indicating its broad application potential. Based on previous research results, this paper primarily summarizes the research and development of high-manganese damping steel at home and abroad. First, the microstructural features of high-manganese damping steel are introduced, and the complex thermal/deformation-induced transformation behavior among austenite, ε-martensite, and α'-martensite is investigated. Second, the mechanical behavior, work-hardening mechanism, damping performance, and the mechanism of high-manganese damping steel are summarized and analyzed. The influence of several strengthening effects on mechanical properties is compared, and the key factors affecting the damping properties of high-manganese damping steel are clarified. Finally, the problems in the research and development of high-manganese damping steel are highlighted, and future research is prospected.

Key wordshigh-manganese damping steel    microstructure    work-hardening behavior    mechanical property    damping mechanism
收稿日期: 2023-03-04     
ZTFLH:  TG135.7  
基金资助:国家自然科学基金项目(52174359)
通讯作者: 陈礼清,lqchen@mail.neu.edu.cn,主要从事先进金属材料的制备、成形及组织性能研究
Corresponding author: CHEN Liqing, professor, Tel:(024)83681819, E-mail: lqchen@mail.neu.edu.cn
作者简介: 陈礼清,男,1965年生,教授,博士
图1  Fe-Mn二元合金相图
图2  Fe-17Mn-0.3Si减振钢在温变形24%后的EBSD分析结果以及ε马氏体变体选择性相变机理[14]
图3  Fe-17Mn减振钢在拉伸变形5%和15%时ε→α'相变的TEM像[19]
图4  Fe-15Mn和Fe-17Mn减振钢中观察到的变形诱导ε→γ相变[19]
图5  Fe-15Mn减振钢中的热诱导γ→α'相变TEM像[19]
图6  Fe-15Mn、Fe-17Mn、Fe-19Mn和Fe-17Mn-0.3Si减振钢的工程应力-应变曲线和冲击功
图7  不同温度下Fe-17Mn-0.3Si减振钢的工程应力-应变和lnθ-lnσ曲线[31]
DeformationStage-IStage-II
temperature / oC
80γεεα', DSA (type-A/B)
120γεεα', DSA (type-A/B)
160DS, DSAεα', DSA (type-B)
(type-B)
200DS, εγεγ, εα', DS,
DSA (type-C)
260DSTwinning, DS
表1  不同温度下影响Fe-17Mn-0.3Si减振钢加工硬化行为的主要因素[31]
图8  Fe-15Mn、Fe-17Mn和Fe-19Mn高锰减振钢的应变振幅-对数衰减率曲线
图9  未变形和拉伸变形5%、15%后Fe-19Mn减振钢的应变振幅-对数衰减率曲线
图10  Fe-19Mn减振钢控制时效处理时的工艺路线图和处理前后的应变振幅-对数衰减率曲线[47]
图11  高锰减振钢中不全位错在受迫振动时运动过程示意图
图12  高锰减振钢中ε马氏体形核长大过程示意图[47]以及内部晶胞结构的TEM像
1 Lee Y K, Baik S H, Kim J C, et al. Effects of amount of ε martensite, carbon content and cold working on damping capacity of an Fe-17% Mn martensitic alloy [J]. J. Alloys Compd., 2003, 355: 10
doi: 10.1016/S0925-8388(03)00244-5
2 Wu Z S, Wang J F, Wang H B, et al. Enhanced damping capacities of Mg-Ce alloy by the special microstructure with parallel second phase [J]. J. Mater. Sci. Technol., 2017, 33: 941
doi: 10.1016/j.jmst.2016.06.027
3 Fukuhara M, Yin F X, Ohsawa Y, et al. High-damping properties of Mn-Cu sintered alloys [J]. Mater. Sci. Eng., 2006, A442: 439
4 Birchon D, Bromley D E, Healey D. Mechanism of energy dissipation in high-damping-capacity manganese-copper alloys [J]. Met. Sci. J., 1968, 2: 41
doi: 10.1016/0036-9748(68)90165-8
5 Souza Filho I R, Sandim M J R, Cohen R, et al. Magnetic properties of a 17.6 Mn-TRIP steel: Study of strain-induced martensite formation, austenite reversion, and athermal α'-formation [J]. J. Magn. Magn. Mater., 2019, 473: 109
doi: 10.1016/j.jmmm.2018.10.034
6 Seol J B, Jung J E, Jang Y W, et al. Influence of carbon content on the microstructure, martensitic transformation and mechanical properties in austenite/ε-martensite dual-phase Fe-Mn-C steels [J]. Acta Mater., 2013, 61: 558
doi: 10.1016/j.actamat.2012.09.078
7 Lü Y P, Hutchinson B, Molodov D A, et al. Effect of deformation and annealing on the formation and reversion of ε-martensite in an Fe-Mn-C alloy [J]. Acta Mater., 2010, 58: 3079
doi: 10.1016/j.actamat.2010.01.045
8 Xu Z Y. Martensitic transformation fcc (γ)→hcp (ε) [J]. Sci. China Ser., 1997, 27E: 289
8 徐祖耀. fcc(γ)→hcp(ε)马氏体相变 [J]. 中国科学, 1997, 27E: 289
9 Yang H S, Jang J H, Bhadeshia H K D H, et al. Critical assessment: Martensite-start temperature for the γε transformation [J]. Calphad, 2012, 36: 16
doi: 10.1016/j.calphad.2011.10.008
10 Takaki S, Nakatsu H, Tokunaga Y. Effects of austenite grain size on ε martensitic transformation in Fe-15mass%Mn alloy [J]. Mater. Trans. JIM, 1993, 34: 489
11 Jiang B H, Qi X, Yang S X, et al. Effect of stacking fault probability on γ-ε martensitic transformation and shape memory effect in Fe-Mn-Si based alloys [J]. Acta Mater., 1998, 46: 501
doi: 10.1016/S1359-6454(97)00266-8
12 Wang H Z, Yang P, Mao W M, et al. Effect of hot deformation of austenite on martensitic transformation in high manganese steel [J]. J. Alloys Compd., 2013, 558: 26
doi: 10.1016/j.jallcom.2012.12.032
13 Liu T Y, Yang P, Meng L, et al. Influence of austenitic orientation on martensitic transformations in a compressed high manganese steel [J]. J. Alloys Compd., 2011, 509: 8337
doi: 10.1016/j.jallcom.2011.05.015
14 Li X, Zhao Y, Chen L Q. Prior warm deformation dependence on microstructural evolution and tensile properties of a high-Mn steel [J]. JOM, 2019, 71: 1303
doi: 10.1007/s11837-018-3281-6
15 Chen J, Zhang W N, Liu Z Y, et al. Microstructural evolution and deformation mechanism of a Fe-15Mn alloy investigated by electron back-scattered diffraction and transmission electron microscopy [J]. Mater. Sci. Eng., 2017, A698: 198
16 Kinney C C, Yi I, Pytlewski K R, et al. The microstructure of as-quenched 12Mn steel [J]. Acta Mater., 2017, 125: 442
doi: 10.1016/j.actamat.2016.12.001
17 Kim J S, Jeon J B, Jung J E, et al. Effect of deformation induced transformation of ɛ-martensite on ductility enhancement in a Fe-12Mn steel at cryogenic temperatures [J]. Met. Mater. Int., 2014, 20: 41
doi: 10.1007/s12540-014-1010-4
18 Kim J S, Shin S Y, Jung J E, et al. Effects of tempering temperature on microstructure and tensile properties of Fe-12Mn steel [J]. Mater. Sci. Eng., 2015, A640: 171
19 Li X, Chen L Q, Zhao Y, et al. Influence of manganese content on ε-/α'-martensitic transformation and tensile properties of low-C high-Mn TRIP steels [J]. Mater. Des., 2018, 142: 190
doi: 10.1016/j.matdes.2018.01.026
20 Zhang W N, Liu Z T, Zhang Z B, et al. The crystallographic mechanism for deformation induced martensitic transformation observed by high resolution transmission electron microscope [J]. Mater. Lett., 2013, 91: 158
doi: 10.1016/j.matlet.2012.09.086
21 Kwon K H, Suh B C, Baik S I, et al. Deformation behavior of duplex austenite and ε-martensite high-Mn steel [J]. Sci. Technol. Adv. Mater., 2013, 14: 014204
22 Kwon K H, Jeong J S, Choi J K, et al. In-situ neutron diffraction analysis on deformation behavior of duplex high Mn steel containing austenite and ɛ-martensite [J]. Met. Mater. Int., 2012, 18: 751
doi: 10.1007/s12540-012-5003-x
23 Seol J B, Kim J G, Na S H, et al. Deformation rate controls atomic-scale dynamic strain aging and phase transformation in high Mn TRIP steels [J]. Acta Mater., 2017, 131: 187
doi: 10.1016/j.actamat.2017.03.076
24 Tomota Y, Strum M, Morris J W. The relationship between toughness and microstructure in Fe-high Mn binary alloys [J]. Metall. Trans., 1987, 18A: 1073
25 Tomota Y, Strum M, Morris J W. Microstructural dependence of Fe-high Mn tensile behavior [J]. Metall. Trans., 1986, 17A: 537
26 Wang Y, Hu B, Liu X Y, et al. Influence of annealing temperature on both mechanical and damping properties of Nb-alloyed high Mn steel [J]. Acta Metall. Sin., 2022, 57: 1588
26 王 玉, 胡 斌, 刘星毅 等. 退火温度对含Nb高锰钢力学和阻尼性能的影响 [J]. 金属学报, 2022, 57: 1588
27 Koyama M, Sawaguchi T, Tsuzaki K. Effect of deformation temperature on tensile properties in a pre-cooled Fe-Mn-C austenitic steel [J]. Mater. Sci. Eng., 2012, A556: 331
28 Koyama M, Sawaguchi T, Tsuzaki K. Premature fracture mechanism in an Fe-Mn-C austenitic steel [J]. Metall. Mater. Trans., 2012, 43A: 4063
29 Li X, Chen L Q, Zhao Y, et al. Influence of original austenite grain size on tensile properties of a high-manganese transformation-induced plasticity (TRIP) steel [J]. Mater. Sci. Eng., 2018, A715: 257
30 Koyama M, Sawaguchi T, Lee T, et al. Work hardening associated with ɛ-martensitic transformation, deformation twinning and dyna-mic strain aging in Fe-17Mn-0.6C and Fe-17Mn-0.8C TWIP steels [J]. Mater. Sci. Eng., 2011, A528: 7310
31 Li X, Wei L L, Chen L Q, et al. Work hardening behavior and tensile properties of a high-Mn damping steel at elevated temperatures [J]. Mater. Charact., 2018, 144: 575
doi: 10.1016/j.matchar.2018.07.036
32 Jiang H F, Zhang Q C, Chen X D, et al. Three types of Portevin-Le Châtelier effects: Experiment and modelling [J]. Acta Mater., 2007, 55: 2219
doi: 10.1016/j.actamat.2006.10.029
33 Huang S K, Li N, Wen Y H, et al. Effect of Si and Cr on stacking fault probability and damping capacity of Fe-Mn alloy [J]. Mater. Sci. Eng., 2008, A479: 223
34 Wu B, Qian B, Wen Y. Effects of Cr on stacking-fault energy and damping capacity of FeMn [J]. Mater. Sci. Technol., 2017, 33: 1019
doi: 10.1080/02670836.2016.1262318
35 Jun J H, Kong D K, Choi C S. The influence of Co on damping capacity of Fe-Mn-Co alloys [J]. Mater. Res. Bull., 1998, 33: 1419
doi: 10.1016/S0025-5408(98)00145-7
36 Choi W S, De Cooman B C. Effect of carbon on the damping capacity and mechanical properties of thermally trained Fe-Mn based high damping alloys [J]. Mater. Sci. Eng., 2017, A700: 641
37 Kim J C, Han D W, Baik S H, et al. Effects of alloying elements on martensitic transformation behavior and damping capacity in Fe-17Mn alloy [J]. Mater. Sci. Eng., 2004, A378: 323
38 Sawaguchi T, Kikuchi T, Yin F X, et al. Internal friction of an Fe-28Mn-6Si-5Cr-0.5NbC shape memory alloy [J]. Mater. Sci. Eng., 2006, A438-440: 796
39 Sawaguchi T, Bujoreanu L G, Kikuchi T, et al. Effects of Nb and C in solution and in NbC form on the transformation-related internal friction of Fe-17Mn (mass%) alloys [J]. ISIJ Int., 2008, 48: 99
doi: 10.2355/isijinternational.48.99
40 Ding S, Li N, Xu Y G, et al. Effects of rare-earth on damping capacity of Fe-17.5Mn alloy [J]. J. Mater. Eng., 2006, (9): 17
40 丁 胜, 李 宁, 胥永刚 等. 稀土对Fe-17.5Mn合金阻尼性能的影响 [J]. 材料工程, 2006, (9): 17
41 Huang S K, Li N, Wen Y H, et al. Effects of deep-cooling and temperature on damping capacity of Fe-Mn alloy [J]. Acta Metall. Sin., 2007, 43: 807
41 黄姝珂, 李 宁, 文玉华 等. 深冷处理和温度对Fe-Mn合金阻尼性能的影响 [J]. 金属学报, 2007, 43: 807
42 Li X, Chen L Q, Yuan X Y, et al. Effect of cooling method and aging time on damping capacity of Fe-19%Mn alloy [J]. J. Univ. Sci. Technol. Liaoning, 2016, 39: 430
42 李 兴, 陈礼清, 袁晓云 等. 冷却方式和时效时间对Fe-19%Mn合金阻尼性能的影响 [J]. 辽宁科技大学学报, 2016, 39: 430
43 Lee Y K, Jun J H, Choi C S. Effect of ε martensite content on the damping capacity of Fe-17%Mn alloy [J]. Scr. Mater., 1996, 35: 825
doi: 10.1016/1359-6462(96)00231-X
44 Watanabe Y, Sato H, Nishino Y, et al. Training effect on damping capacity in Fe-20mass%Mn binary alloy [J]. Mater. Sci. Eng., 2008, A490: 138
45 Jun J H, Baik S H, Lee Y K, et al. The influence of aging on damping capacity of Fe-17%Mn-X%C alloys [J]. Scr. Mater., 1998, 39: 39
doi: 10.1016/S1359-6462(98)00125-0
46 Wen Y H, Xiao H X, Peng H B, et al. Relationship between damping capacity and variations of vacancies concentration and segregation of carbon atom in an Fe-Mn alloy [J]. Metall. Mater. Trans., 2015, 46A: 4828
47 Li X, Chen L Q, Zhao Y. Controlled aging processes to improve damping capacity of Fe-19Mn alloy [J]. Mater. Res. Express, 2019, 6: 066579
48 Huang S K, Zhou D C, Liu J H, et al. Effects of strain amplitude and temperature on the damping capacity of an Fe-19Mn alloy with different microstructures [J]. Mater. Charact., 2010, 61: 1227
doi: 10.1016/j.matchar.2010.08.001
49 Huang S K, Huang W R, Liu J H, et al. Internal friction mechanism of Fe-19Mn alloy at low and high strain amplitude [J]. Mater. Sci. Eng., 2013, A560: 837
50 Granato A, Lücke K. Theory of mechanical damping due to dislocations [J]. J. Appl. Phys., 1956, 27: 583
51 Granato A V, Lücke K. Temperature dependence of amplitude-dependent dislocation damping [J]. J. Appl. Phys., 1981, 52: 7136
doi: 10.1063/1.328687
52 Bardeen J, Herring C. Imperfections in Nearly Perfect Crystals [M]. New York: Wiley, 1952: 197
53 Galindo-Nava E I, Rivera-Díaz-del-Castillo P E J. Understanding martensite and twin formation in austenitic steels: A model describing TRIP and TWIP effects [J]. Acta Mater., 2017, 128: 120
doi: 10.1016/j.actamat.2017.02.004
54 Liu X, Zhao G, Li D H, et al. Research and development of 17 Mn damping steel 4~100 mm plate at Ansteel [J]. Spec. Steel, 2022, 43(4): 55
54 刘 璇, 赵 刚, 李大航 等. 鞍钢17Mn阻尼钢4~100 mm板的研制 [J]. 特殊钢, 2022, 43(4): 55
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[12] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.