金属学报, 2023, 59(4): 502-512 DOI: 10.11900/0412.1961.2022.00531

综述

Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展

吴欣强, 戎利建,, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜

中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016

Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels

WU Xinqiang, RONG Lijian,, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu

CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

通讯作者: 戎利建,ljrong@imr.ac.cn,主要从事核用材料研究

责任编辑: 李海兰

收稿日期: 2022-10-20   修回日期: 2022-11-10  

基金资助: 国家自然科学基金项目(52271077)
国家自然科学基金项目(51871218)
中核集团领创科研项目及中国科学院青年创新促进会项目(2021189)

Corresponding authors: RONG Lijian, professor, Tel:(024)23971979, E-mail:ljrong@imr.ac.cn

Received: 2022-10-20   Revised: 2022-11-10  

Fund supported: National Natural Science Foundation of China(52271077)
National Natural Science Foundation of China(51871218)
LingChuang Research Project of China National Nuclear Corporation, and Youth Innovation Promotion Association CAS(2021189)

作者简介 About authors

吴欣强,男,1971年生,研究员,博士

摘要

结构材料是制约铅冷快堆建设的关键因素之一,原因是其组成元素在液态Pb-Bi共晶(LBE)中会发生不同程度的溶解,影响结构安全。候选结构材料铁素体/马氏体钢T91与不锈钢316在550℃饱和氧LBE环境中发生快速氧化腐蚀;溶解氧浓度降至1.26 × 10-6% (质量分数)可减轻T91的液态LBE腐蚀,但低于1 × 10-6%时,T91与316钢发生溶解腐蚀;T91液态LBE脆化敏感性高,导致其在350℃液态LBE中腐蚀疲劳寿命显著降低。与商用的(9%~12%)Cr铁素体/马氏体钢和316型奥氏体不锈钢相比,经微合金化的Si增强型铁素体/马氏体钢(9Cr-Si和12Cr-Si)和奥氏体不锈钢(ASS-Si),具有较好的组织稳定性和综合力学性能,且在液态LBE中形成的富Si氧化物提高了氧化膜的致密性,改善了其耐腐蚀性能,在550℃下静态饱和氧和动态控氧LBE环境中的溶解腐蚀受到抑制,有望满足铅冷快堆的设计需求。

关键词: 铁素体/马氏体钢; 奥氏体不锈钢; 液态金属腐蚀; 液态金属脆化; 力学性能; 组织稳定性

Abstract

Structural materials are one of the major factors that restrict the lead-cooled fast reactor construction due to metallic elements that can dissolve in the liquid lead-bismuth eutectic (LBE), which may affect the structure's safety. T91 steel and 316 stainless steel are the leading structural materials for critical equipment such as fuel cladding, reactor vessels, and reactor core internals. The environmental compatibility of those steels with the liquid LBE needs to be systematically evaluated. However, T91 steel and 316 stainless steel suffer from rapid oxidation corrosion in oxygen-saturated LBE at 550oC. T91 steel's corrosion resistance in liquid LBE can be improved by decreasing the oxygen concentration (1.26 × 10-6%, mass fraction), but dissolved corrosion occurred at dissolved oxygen concentration below 1 × 10-6% for T91 steel and 316 stainless steel. T91 steel is sensitive to liquid metal embrittlement, significantly reducing its corrosion fatigue life in the liquid LBE. Compared to the standard (9%-12%)Cr ferritic/martensitic steel and 316 stainless steel, the microalloyed Si enhanced (9%-12%)Cr ferritic/martensitic steel (9Cr-Si and 12Cr-Si) and 316 stainless steel (ASS-Si) have good microstructural stability and comprehensive mechanical properties. The Si-rich oxide formation in liquid LBE improves the oxide film compactness and corrosion resistance. The dissolution corrosion was inhibited in static oxygen-saturation and oxygen-controlled (10-6%-10-7%) flowing liquid LBE (0.3 m/s) at 550oC for 9Cr-Si, 12Cr-Si, and ASS-Si. These alloys are expected to meet the design requirements for a lead-cooled fast reactor.

Keywords: ferritic/martensitic steel; austenitic stainless steel; liquid metal corrosion; liquid metal embrittlement; mechanical property; microstructure stability

PDF (4501KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512 DOI:10.11900/0412.1961.2022.00531

WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. Acta Metallurgica Sinica, 2023, 59(4): 502-512 DOI:10.11900/0412.1961.2022.00531

铅冷快堆是最具应用前景的四代堆型之一。Pb-Bi共晶(lead-bismuth eutectic,LBE)由于熔点低(125℃)、沸点高(1670℃)、良好的中子经济性和化学惰性等,是铅冷快堆的首选冷却剂。铅冷快堆的设计服役温度高达550℃,结构材料面临耦合快中子辐照、液态LBE腐蚀、液态金属脆化(LME)等损伤问题,特别要求堆芯结构材料能够承受50~150 dpa (displacements per atom)辐照损伤、具有良好的长时热老化力学性能(拉伸强度、塑性、断裂韧性、蠕变与疲劳等)和良好的液态LBE环境相容性、低活化性等[1~3],因此结构材料成为制约铅冷快堆研发与应用的瓶颈。最近Gong等[3]系统综述了铅冷快堆的候选结构材料及其液态LBE环境相容性,指出铁素体/马氏体钢(T91、HT9等)、奥氏体不锈钢(316、15-15Ti等)、氧化物弥散强化钢、MAX相陶瓷与碳化硅等是主要的候选材料,其中铁素体/马氏体钢与奥氏体不锈钢是核反应堆已大量应用的结构材料,积累了大量的服役性能数据,并收录在美国机械工程师协会(ASME)等相关手册中,是近期最有可能应用于铅冷快堆的结构材料。因此,铁素体/马氏体钢与奥氏体不锈钢的液态LBE环境相容性成为国内外研究的重点。研究[3~12]表明,T91与316钢在低于450℃、含氧的液态LBE环境中,表面可生成保护性氧化膜,具有良好的耐腐蚀性能;但当温度超过450℃时,表面氧化膜疏松多孔,且容易发生剥落,特别是溶解氧(DO)溶度低于10-8% (质量分数,下同)时会发生严重的溶解腐蚀,服役性能急剧恶化。同时,铁素体/马氏体钢在150~450℃液态LBE环境中,可能发生严重的LME,导致塑性、断裂韧性、蠕变强度和疲劳强度等显著降低[3,13~25];尽管316钢在液态LBE环境中的LME敏感性低,但其在高温低氧条件下,Ni元素发生选择性溶解导致基体转变成铁素体[3,8,12,13],可能降低其力学性能。因此,T91与316钢如果作为铅冷快堆的结构材料,需提高其与液态LBE的相容性。优化控制液态LBE中的DO浓度是改善材料液态LBE腐蚀性能的一种有效途径。根据Ellingham图,液态LBE中的DO浓度的选择,既要保证铁基结构材料表面能够生成Fe3O4,又要确保不生成PbO,一般应控制在10-8%~10-6%[1~3]。在此浓度范围内,需综合考虑DO浓度对氧化膜生长热力学与动力学的影响,如何确定铅冷快堆服役时的最优DO浓度,尚需要大量材料环境相容性数据来支撑。合金化也是提高结构材料耐LBE腐蚀性能的有效途径。通过添加Si、Al等元素,生成富Si或Al的氧化物,提高了氧化膜的致密性及其与基体的结合力,成为改善铁素体/马氏体钢和不锈钢的耐液态LBE腐蚀性能的主流方式[26~35]。然而,Si添加会促进有害相的形成,损伤合金的力学性能。Chen和Rong[36]研究表明,Si含量增加导致铁素体/马氏体钢中Laves相析出,提高了韧脆转变温度。Van Den Bosch等[37]研究表明,Si添加会增加铁素体/马氏体钢的LME敏感性。Gong等[38]结合实验与第一性原理计算,揭示了Si添加导致bcc结构纯Fe LME敏感性增加的机理。因此,目前对Si添加合金的研发,主要集中在提升其耐液态LBE腐蚀性能,很少从材料设计的角度兼顾其室温力学性能、高温性能、持久性能、蠕变性能和环境相容性等。同时,合金在液态LBE环境中的断裂韧性与疲劳性能等影响关键设备结构完整性与服役寿命的力学性能数据仍极度缺乏,主要受限于高温液态LBE环境中应变与裂纹长度等原位测量技术不成熟。基于此,本文主要介绍了中国科学院金属研究所部分科研团队在液态LBE环境相容性评价技术、商用T91与316钢的液态LBE环境相容性评价以及经微合金化的Si增强型(9%~12%)Cr铁素体/马氏体钢与316不锈钢的研究进展。

1 铁素体/马氏体钢T91与不锈钢316LBE相容性

中国科学院金属研究所与中广核研究院有限公司联合研制了液态LBE腐蚀浸泡试验装置、液态LBE溶解氧电极及控氧系统[4]、液态LBE慢拉伸/蠕变试验装置[39]与液态LBE腐蚀疲劳试验装置[40],如图1所示。可进行结构材料在550℃以下控氧液态LBE环境中的腐蚀、慢拉伸、蠕变、断裂韧性、疲劳/蠕变疲劳与裂纹扩展等性能测试。

图1

图1   液态Pb-Bi共晶(LBE)腐蚀损伤测试装置实物图

Fig.1   Photos of corrosion damage test apparatuses in liquid lead-bismuth eutectic (LBE)

(a) immersion test apparatus (b) Pt/air sensor

(c) slow strain rate/creep test apparatus (d) fatigue test apparatus


基于液态LBE腐蚀浸泡试验装置与液态LBE溶解氧电极及控氧系统,开展了铁素体/马氏体钢T91 (Cr 8.77、Si 0.36、Mo 0.9、C 0.11、Ni 0.17、Mn 0.4、Fe余量,质量分数,%)与不锈钢316 (C 0.021、Si 0.43、Mn 1.52、P 0.016、S 0.003、N 0.056、Ni 13.0、Mo 2.39、Cr 17.82、Fe余量,质量分数,%)的液态LBE腐蚀性能研究。图2[4]为T91在550℃、不同DO浓度液态LBE环境中浸泡1000 h后的氧化膜截面形貌。在饱和氧(1.38 × 10-3%)条件下,T91表面氧化膜厚度约为48 μm,分为外层疏松多孔的Fe3O4、内层致密的Fe-Cr尖晶石氧化物及发生Cr选择性氧化的内氧化区;当DO浓度降低至1.26 × 10-6%时,氧化膜厚度降低至约7 μm,分为外层Fe-Cr尖晶石氧化物与发生Cr选择性氧化的内氧化区;当DO浓度降低至1.41 × 10-8%时,表面难以生成氧化膜,发生了基体溶解与Pb-Bi侵入;当DO浓度继续降低至1.12 × 10-9%时,溶解腐蚀与Pb-Bi侵入进一步加剧。图3为不锈钢316在550℃、不同DO浓度液态LBE环境中浸泡1000 h后的氧化膜截面形貌。在饱和氧条件下,316不锈钢表面氧化膜厚度约为14 μm,分为外层疏松多孔的Fe-Pb氧化物与Fe3O4以及内层致密的Fe-Cr尖晶石氧化物,氧化膜中存在大量的孔洞,有诱发裂纹导致氧化膜剥落的倾向;当DO浓度降低至1 × 10-7%时,表面几乎未观察到氧化膜,发生了基体溶解与Pb-Bi侵入。

图2

图2   铁素体/马氏体钢T91在550℃液态LBE中浸泡1000 h后的截面形貌[4]

Fig.2   Cross-section morphologies of oxide films on T91 steel after 1000 h exposure in liquid LBE at 550oC and different mass fractions of dissolved oxygen (DO)[4] (OOL—outer oxide layer, IOL—inner oxide layer, IOZ—inner oxide zone, OL—oxide layer)

(a) saturated oxygen (b) 1.26 × 10-6% DO (c) 1.41 × 10-8% DO (d) 1.12 × 10-9% DO


图3

图3   不锈钢316在550℃液态LBE中浸泡1000 h后的截面形貌

Fig.3   Cross-sectional morphologies of oxide films on 316 stainless steel after 1000 h exposure in liquid LBE at 550oC

(a) saturated oxygen (b) 1 × 10-7% DO


基于液态LBE腐蚀疲劳试验装置,开展了T91与316钢的液态LBE腐蚀疲劳性能研究。图4为T91与316钢在高温空气与饱和氧液态LBE环境中的低周疲劳寿命曲线。结果表明,T91在350℃空气中疲劳寿命位于ASME平均曲线附近;在350℃液态LBE环境中疲劳寿命急剧降低,且在高应变幅时下降得更为显著,在应变幅为1%时疲劳寿命已接近ASME设计曲线。316钢在400℃空气中疲劳寿命位于ASME平均曲线附近;在400℃液态LBE环境中,疲劳寿命与空气中的相当,仅在高应变幅(≥ 0.8%)条件下降低。图5为T91 (饱和氧,350℃,应变幅0.6%)与316钢(饱和氧,400℃,应变幅0.8%)在液态LBE环境中疲劳裂纹扩展区形貌。T91的疲劳断口表面未观察到疲劳辉纹,为典型的准解理开裂特征,发生了LME,导致疲劳寿命显著降低[16,17,19];316钢的断口表面呈现疲劳辉纹特征,未发生LME,疲劳寿命与空气中的相当或略微降低。

图4

图4   T91和316钢在高温空气与液态LBE环境中疲劳寿命对比

Fig.4   Comparisons between fatigue life in air and liquid LBE (ASME—America Society of Mechanical Engineers)

(a) T91 steel (b) 316 stainless steel


图5

图5   T91和316钢在液态LBE环境中疲劳裂纹扩展区特征

Fig.5   Morphologies of fatigue crack propagation region in liquid LBE

(a) T91 steel, 350oC, strain amplitude 0.6%

(b) 316 stainless steel, 400oC, strain amplitude 0.8%


上述结果表明,控制液态LBE环境中的DO浓度,可提高T91钢的耐腐蚀性能,但316钢含有较高的Ni元素,在低氧条件下发生溶解腐蚀。兼顾T91与316钢耐腐蚀性能的最佳DO浓度仍需要更详细的实验数据来支撑选择。而且,铁素体/马氏体钢T91与不锈钢316在液态LBE环境中可能发生显著的LME或腐蚀降级,需优化其合金成分与制备工艺等来提高其固有的耐液态LBE腐蚀性能。

2 Si增强型铁素体/马氏体钢((9%~12%)Cr)和奥氏体不锈钢(316)

2.1 Si增强型铁素体/马氏体钢((9%~12%)Cr)

中国科学院金属研究所和中国原子能科学研究院在铁素体/马氏体钢T91 (ASME标准)成分的基础上,通过提高Si含量,并适当调整其他合金元素含量,研制出了Si增强型(9%~12%)Cr铁素体/马氏体钢,以下分别简记为9Cr-Si (9Cr系)和12Cr-Si (12Cr系)。2种Si增强型钢的耐LBE腐蚀性能得到明显提高,在550℃静态饱和氧的LBE环境下浸泡1000 h后9Cr-Si的氧化层厚度为24 μm (图6),明显低于T91的48 μm (图2a);12Cr-Si的氧化膜生长速率明显低于HT9 (图7a),HT9和12Cr-Si在腐蚀10000 h后的氧化层厚度分别为75和42 μm (图7bc)。此外,在550℃动态控氧(0.3 m/s,10-6%~10-7%)的LBE环境下,HT9和12Cr-Si的氧化层(1500 h)厚度分别为22和12 μm (图7de)。Si增强型(9%~12%)Cr铁素体/马氏体钢在静态和动态LBE环境下的优异耐腐蚀性能与其Si含量的提高有关:较高的Si含量在内氧化层与基体之间会形成富Si层(图6b7e),且Si倾向于在晶界处形成含Si氧化物颗粒,阻碍了元素沿晶界的快速扩散,从而提高了钢的耐LBE腐蚀性能[41]

图6

图6   9Cr-Si在550℃静态饱和氧LBE环境下腐蚀1000 h后的氧化层形貌及元素分布

Fig.6   Cross-sectional back scattered electron (BSE) image (a) and corresponding line scanning (b) of 9Cr-Si alloy after exposure for 1000 h to stagn-ant oxygen-saturated LBE at 550oC


图7

图7   12Cr-Si系铁素体/马氏体钢LBE腐蚀实验结果

Fig.7   LBE corrosion test results of 12Cr-Si ferritic/martensitic steels

(a) corrosion layer thickness changes with time in stagnant oxygen-saturated LBE at 550oC (b, c) cross-sectional morphologies of HT9 steel (b) and 12Cr-Si steel (c) after exposure for 10000 h to stagnant oxygen-saturated LBE at 550oC (d, e) cross-sectional morphologies and corresponding EDS element mappings of HT9 steel (d) and 12Cr-Si steel (e) after exposure to flowing and oxygen controlled LBE for 1500 h (0.3 m/s, 10-6%-10-7%)


Si增强后可以显著提升(9%~12%)Cr铁素体/马氏体钢的耐LBE腐蚀性能,但Si作为一种强铁素体形成元素,也会提高高温δ铁素体的析出倾向[42]。如在铸态9Cr-Si中就存在约3.6% (面积分数)的δ铁素体(图8a),该组织会降低(9%~12%)Cr铁素体/马氏体钢的冲击韧性、持久性能等。理论计算表明,9Cr-Si存在完全奥氏体化的温度区间,理论上可通过高温处理促使δ铁素体回溶,从而达到消除δ铁素体的目的。研究亦表明,铸态9Cr-Si经1150℃均质化处理后,可消除δ铁素体相(图8b)。均质化后的9Cr-Si经过热加工变形及正火和回火处理,得到回火马氏体组织(图9),且在晶界和板条界析出了M23C6和NbC。因此,9Cr-Si获得了与T91钢相似的微观组织,其室温、高温拉伸性能以及韧脆转变温度(DBTT)与T91相当(图10)。值得注意的是,12Cr-Si在提高Si含量的同时,利用合金元素调控铬镍当量(CNB值),结合制备工艺优化,使其δ-Fe面积分数< 1%,保证了合金具有较高的强度和韧性。

图8

图8   9Cr-Si铁素体/马氏体钢的铸态组织和均质化处理后的组织

Fig.8   SEM images of microstructures of as cast 9Cr-Si (a) and as-homogenized 9Cr-Si (b)


图9

图9   回火态9Cr-Si铁素体/马氏体钢的SEM像

Fig.9   SEM image of tempered 9Cr-Si ferritic/martensitic steel


图10

图10   9Cr-Si铁素体/马氏体钢和T91的室温、高温强度曲线及韧脆转变温度(DBTT)曲线

Fig.10   Strength curves at room temperature and high temperature (a) and ductile-to-brittle transition temperature (DBTT) curves (b) of 9Cr-Si and T91 steels


(9%~12%)Cr铁素体/马氏体钢在高温服役过程要求微观组织具有良好的稳定性和优异的持久性能,以保证核能系统结构的安全[43]。550℃时效3000 h实验结果表明,9Cr-Si的拉伸性能变化不大,其冲击韧性虽有一定程度的下降(图11a),时效后合金钢的室温冲击功(114 J)大于100 J,仍具有较好的冲击韧性。继续延长时效时间至10000 h,钢的冲击功基本保持不变。研究表明,9Cr-Si的冲击功下降是由于析出了脆性的Laves相(图11bc),会引起局部应力集中。上述结果表明,Si增强后的9Cr-Si具有较好的组织稳定性。650℃下的高温持久实验测试结果(图12)表明,12Cr-Si的持久性能明显优于HT9,优异的高温持久性能得益于12Cr-Si钢中较多的强化相和低δ-Fe含量。

图11

图11   9Cr-Si铁素体/马氏体钢550℃时效后DBTT曲线及时效3000 h后的TEM像与元素分布图

Fig.11   DBTT curves of tempered and aged 9Cr-Si steel at 550oC (a), TEM image after 3000 h aging (b), and the elements mappings of the area denoted by the rectangle in Fig.11b (c)


图12

图12   650℃下12Cr-Si和HT9持久性能的对比

Fig.12   Creep-rupture strength of 12Cr-Si and HT9 steels at 650oC


综上所述,研发的Si增强型(9%~12%)Cr铁素体/马氏体钢,除了具有优异的耐LBE腐蚀性能,同时还有良好的室温、高温拉伸性能和冲击韧性,具有优异的持久性能和高温长时时效组织稳定性,有望满足铅冷快堆的设计要求。

2.2 Si增强316不锈钢

中国科学院金属研究所和中国原子能科学研究院在316钢成分的基础上,通过提高Si含量,并适当调整其他合金元素含量,成功研制出了Si增强奥氏体不锈钢,以下简记为ASS-Si。图13为ASS-Si和316钢经550℃饱和氧LBE腐蚀5000 h后氧化膜厚度随时间的变化曲线。可见,2种奥氏体钢的氧化膜厚度随时间的变化呈抛物线规律,其速率常数分别为0.18和0.44 μm2/h。ASS-Si在LBE中的腐蚀速率显著小于316钢。ASS-Si经饱和氧Pb-Bi腐蚀1000 h后氧化膜的截面形貌和元素分布如图14所示。表面形成了双层结构的氧化膜,外层为Fe3O4(图14b),内层为Fe-Cr尖晶石,同时观察到Si的明显富集(图14c)。富Si氧化物具有较好的稳定性,提高了内层氧化膜的致密性,可抑制金属元素的向外扩散和O的内扩散,是ASS-Si耐LBE腐蚀性能提升的主要原因。

图13

图13   ASS-Si和316钢经550℃饱和氧LBE腐蚀5000 h后氧化层厚度随时间的变化曲线

Fig.13   Thicknesses of oxide scale of ASS-Si and 316 austenitic steels after exposure up to 5000 h to stagnant oxygen-saturated LBE at 550oC


图14

图14   ASS-Si经550℃饱和氧LBE腐蚀1000 h后氧化膜的截面形貌和元素分布

Fig.14   Cross-sectional BSE image (a) and corresponding EDS analyses (b,c) of ASS-Si austenitic steel after exposure for 1000 h to stagnant oxygen-saturated LBE at 550oC


进一步考察了流动控氧条件下ASS-Si和316钢的耐LBE腐蚀性能。图15为550℃、0.3 m/s流速、10-6%~10-7% DO浓度的液态LBE中腐蚀1500 h后的样品形貌。316钢表面出现了明显的溶解腐蚀,最大腐蚀深度约200 μm,破坏了样品的完整性(图15a)。样品表面未形成氧化膜,Pb-Bi已侵入基体,出现了Ni溶解导致的铁素体层(图15b)。相比之下,ASS-Si样品仍保持良好的完整性(图15c)。高倍照片显示,样品表面形成了约3 μm厚的连续、均匀的氧化膜(图15d)。可见,ASS-Si表面能形成保护性氧化膜,有效阻碍液态Pb-Bi的侵入和元素溶解,保证了其在流动控氧条件下的耐LBE腐蚀性能。

图15

图15   ASS-Si和316钢经550℃流动控氧LBE腐蚀1500 h后的截面形貌

Fig.15   Cross-sectional SEM images of 316 (a,b) and ASS-Si (c,d) austenitic steels after exposure for 1500 h to flowing oxygen-controlled LBE at 550oC (Figs.12b and d are enlarged views of the areas in Figs.11a and c, respectively)


然而,Si添加会影响奥氏体的稳定性,增加δ铁素体的形成倾向,进而损伤力学性能。与奥氏体相比,δ铁素体中Cr、Mo的过饱和度高、元素扩散速率快,高温服役过程中δ铁素体易分解为M23C6、Laves、σ等脆性相[44~46]。研究[47]表明,δ铁素体的分解速率比奥氏体中的相析出速率快2个数量级以上。另外,Si会促进奥氏体中σ相和G相((Ni,Fe,Cr)16(Nb,Ti)6Si7)的析出。中子辐照会进一步加速富Si相的析出[48]。为消除Si添加形成δ铁素体的不利影响,设计合金具有较高的C含量以调控Cr、Ni当量比。然而,550℃时效过程中,晶界处易析出M23C6。由于Si在碳化物中的溶解度较低,Si原子逐渐被排斥至周围基体中,增加了附近基体中Si的过饱和度。随着时效时间的延长,Si含量较高的G相和σ相从过饱和奥氏体基体中脱溶析出,导致奥氏体的稳定性降低,转变为α铁素体,最终在晶界附近形成了α铁素体+ G相+ σ相的混合组织(图16)。

图16

图16   含Si奥氏体钢经550℃时效处理1000 h后晶界附近的微观组织及元素分布

Fig.16   TEM image and the corresponding element mappings of Cr, Ni, Si, and Fe near grain boundaries of Si-modified austenitic steel after aging at 550oC for 1000 h


为了改善高温组织稳定性,在ASS-Si中添加Nb以调控Nb / C质量比,降低了M23C6的析出倾向,抑制富Si相析出引起的奥氏体分解[49]。研制的ASS-Si奥氏体钢具有良好的力学性能,如表1所示。550℃下的屈服强度、抗拉强度以及持久强度均高于《ASME核电规范与标准BPVC-3核设施部件建造规划第1册NH分卷高温使用的1级部件》对Type 304奥氏体钢的性能要求。

表1   ASS-Si奥氏体钢和Type 304奥氏体钢在550℃下的拉伸强度和持久强度 (MPa)

Table 1  Tensile and creep-rupture strength of Type 304 aus-tenitic steel and ASS-Si austenitic steel at 550oC

SteelYield strengthTensile strength3000 h creep-rupture strength

Type 304

ASS-Si

106

201

349

433

210

220

新窗口打开| 下载CSV


3 总结与展望

(1) 铁素体/马氏体钢T91在550℃饱和氧液态LBE环境中发生快速氧化,DO浓度降低至1.26 × 10-6%时,腐蚀速率降低,DO浓度低于1 × 10-6%时,发生溶解腐蚀;T91的LME敏感性高,在350℃液态LBE环境中发生准解理开裂,低周疲劳寿命显著降低。

(2) 不锈钢316在550℃饱和氧液态LBE环境中发生快速氧化,DO浓度降低至1 × 10-7%时,发生溶解腐蚀,Ni选择性溶解,Pb-Bi侵入基体中;316不锈钢对LME不敏感,在400℃液态LBE环境中低周疲劳性能仅略微降低。

(3) Si增强型(9%~12%)Cr铁素体/马氏体钢表面生成富Si氧化膜,耐LBE腐蚀性能显著提高,具有良好的高温拉伸性能、组织稳定性和高温持久性能等。

(4) Si增强ASS-Si奥氏体钢中形成了稳定性更好的富Si氧化物,提高了氧化膜的致密性,在550℃静态饱和氧和动态控氧的液态LBE中具有良好的耐腐蚀性能;同时基于Nb / C质量比等关键元素控制,改善了Si添加对奥氏体稳定性带来的不利影响,使设计合金具有良好的力学性能。

(5) 对液态LBE环境中应用的Si增强型(9%~12%)Cr铁素体/马氏体钢及奥氏体不锈钢的优化,还需系统考核其可焊性与辐照性能,特别是辐照与液态LBE腐蚀耦合作用下材料的行为与机理。未来更应关注其高温长期服役过程中的组织、性能稳定性(如相析出机制)以及持久、蠕变与疲劳性能等,为铅冷快堆的安全运行和结构材料的迭代升级提供数据积累与技术支撑。

(6) LME是影响铅冷快堆结构材料综合性能的关键,现有模型难以解释LME发生的本质原因,未来应从原子尺度上揭示LME损伤机理,从而指导研发兼具耐LBE腐蚀与LME敏感性低的新型合金。

参考文献

Was G S.

Challenges to the use of ion irradiation for emulating reactor irradiation

[J]. J. Mater. Res., 2015, 30: 1158

DOI      URL     [本文引用: 2]

OECD, Nuclear Energy Agency.

Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermalhydraulics and technologies

[R]. OECD/NEA No. 6195, 2015

Gong X, Short M P, Auger T, et al.

Environmental degradation of structural materials in liquid lead- and lead-bismuth eutectic-cooled reactors

[J]. Prog. Mater. Sci., 2022, 126: 100920

DOI      URL     [本文引用: 6]

Zhu Z G, Zhang Q, Tan J B, et al.

Corrosion behavior of T91 steel in liquid lead-bismuth eutectic at 550oC: Effects of exposure time and dissolved oxygen concentration

[J]. Corros. Sci., 2022, 204: 110405

DOI      URL     [本文引用: 4]

Yeliseyeva O, Tsisar V, Benamati G.

Influence of temperature on the interaction mode of T91 and AISI 316L steels with Pb-Bi melt saturated by oxygen

[J]. Corros. Sci., 2008, 50: 1672

DOI      URL    

Martinelli L, Dufrenoy T, Jaakou K, et al.

High temperature oxidation of Fe-9Cr-1Mo steel in stagnant liquid lead-bismuth at several temperatures and for different lead contents in the liquid alloy

[J]. J. Nucl. Mater., 2008, 376: 282

DOI      URL    

Sapundjiev D, Van Dyck S, Bogaerts W.

Liquid metal corrosion of T91 and A316L materials in Pb-Bi eutectic at temperatures 400-600oC

[J]. Corros. Sci., 2006, 48: 577

DOI      URL    

Klok O, Lambrinou K, Gavrilov S, et al.

Effect of deformation twinning on dissolution corrosion of 316L stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500oC

[J]. J. Nucl. Mater., 2018, 510: 556

DOI      URL     [本文引用: 1]

Kurata Y, Futakawa M, Saito S.

Comparison of the corrosion behavior of austenitic and ferritic/martensitic steels exposed to static liquid Pb-Bi at 450 and 550oC

[J]. J. Nucl. Mater., 2005, 343: 333

DOI      URL    

Tsisar V, Schroer C, Wedemeyer O, et al.

Effect of structural state and surface finishing on corrosion behavior of 1.4970 austenitic steel at 400 and 500oC in flowing Pb-Bi eutectic with dissolved oxygen

[J]. J. Nucl. Eng. Rad. Sci., 2018, 4: 041001

Schroer C, Wedemeyer O, Skrypnik A, et al.

Corrosion kinetics of Steel T91 in flowing oxygen-containing lead-bismuth eutectic at 450oC

[J]. J. Nucl. Mater., 2012, 431: 105

DOI      URL    

Tian S J.

Growth and exfoliation behavior of the oxide scale on 316L and T91 in flowing liquid lead-bismuth eutectic at 480oC

[J]. Oxid. Met., 2020, 93: 183

DOI      [本文引用: 2]

Kolman D G.

A review of recent advances in the understanding of liquid metal embrittlement

[J]. Corrosion, 2019, 75: 42

DOI      [本文引用: 2]

Significant advances in the study of liquid metal embrittlement have occurred since 2000 but there have been few reviews of the liquid metal embrittlement literature since that time. This review discusses recent advances in modeling and testing. Specific solid-liquid systems (including steel exposed to molten lead-bismuth and aluminum-gallium) are reviewed. Relationships between various studies are considered and the need for careful test protocols is emphasized. The individual effects of wetting, crack initiation, and propagation are discussed. Mechanisms of liquid metal embrittlement including interatomic and mass transport-based phenomena are analyzed.

Gong X, Stergar E, Marmy P, et al.

Tensile fracture behavior of notched 9Cr-1Mo ferritic-martensitic steel specimens in contact with liquid lead-bismuth eutectic at 350oC

[J]. Mater. Sci. Eng., 2017, A692: 139

Wang H, Gong X, Xiao J, et al.

Liquid metal embrittlement of 12Cr ferritic/martensitic steel thin-walled tubes exposed to liquid lead-bismuth eutectic

[J]. Corros. Sci., 2022, 195: 110024

DOI      URL    

Xue B Q, Tan J B, Zhang Z Y, et al.

Effect of temperature on low cycle fatigue behavior of T91 steel in liquid lead-bismuth eutectic environment at 150-550oC

[J]. Int. J. Fatigue, 2023, 167: 107344

DOI      URL     [本文引用: 1]

Gong X, Marmy P, Verlinden B, et al.

Low cycle fatigue behavior of a modified 9Cr-1Mo ferritic-martensitic steel in lead-bismuth eutectic at 350oC—Effects of oxygen concentration in the liquid metal and strain rate

[J]. Corros. Sci., 2015, 94: 377

DOI      URL     [本文引用: 1]

Vogt J B, Bouquerel J, Carle C, et al.

Stability of fatigue cracks at 350 oC in air and in liquid metal in T91 martensitic steel

[J]. Int. J. Fatigue, 2020, 130: 105265

DOI      URL    

Gong X, Marmy P, Qin L, et al.

Temperature dependence of liquid metal embrittlement susceptibility of a modified 9Cr-1Mo steel under low cycle fatigue in lead-bismuth eutectic at 160-450oC

[J]. J. Nucl. Mater., 2016, 468: 289

DOI      URL     [本文引用: 1]

Van Den Bosch J, Coen G, Almazouzi A, et al.

Fracture toughness assessment of ferritic-martensitic steel in liquid lead-bismuth eutectic

[J]. J. Nucl. Mater., 2009, 385: 250

DOI      URL    

Auger T, Gorse D, Hamouche-Hadjem Z, et al.

Fracture mechanics behavior of the T91 martensitic steel in contact with liquid lead-bismuth eutectic for application in an accelerator driven system

[J]. J. Nucl. Mater., 2011, 415: 293

DOI      URL    

Weisenburger A, Jianu A, An W, et al.

Creep, creep-rupture tests of Al-surface-alloyed T91 steel in liquid lead bismuth at 500 and 550oC

[J]. J. Nucl. Mater., 2012, 431: 77

DOI      URL    

Yurechko M, Schroer C, Skrypnik A, et al Creep-to-rupture of the steel P 92

at 650oC in oxygen-controlled stagnant lead in comparison to air

[J]. J. Nucl. Mater., 2013, 432: 78

DOI      URL    

Yurechko M, Schroer C, Skrypnik A, et al.

Creep-to-rupture of 12Cr- and 14Cr-ODS steels in oxygen-controlled lead and air at 650oC

[J]. J. Nucl. Mater., 2014, 450: 88

DOI      URL    

Yurechko M, Schroer C, Wedemeyer O, et al.

Creep-rupture tests on chromium-containing conventional and ODS steels in oxygen-controlled Pb and air at 650 oC

[J]. Nucl. Eng. Des., 2014, 280: 686

DOI      URL     [本文引用: 1]

Schroer C, Koch V, Wedemeyer O, et al.

Silicon-containing ferritic/martensitic steel after exposure to oxygen-containing flowing lead-bismuth eutectic at 450 and 550oC

[J]. J. Nucl. Mater., 2016, 469: 162

DOI      URL     [本文引用: 1]

Shi H, Jianu A, Fetzer R, et al.

Compatibility and microstructure evolution of Al-Cr-Fe-Ni high entropy model alloys exposed to oxygen-containing molten lead

[J]. Corros. Sci., 2021, 189: 109593

DOI      URL    

Li N, Parker S S, Saleh T A, et al.

Intermediate temperature corrosion behaviour of Fe-12Cr-6Al-2Mo-0.2Si-0.03Y alloy (C26M) at 300-600oC

[J]. Corros. Sci., 2019, 157: 274

DOI      URL    

Popovic M P, Chen K, Shen H, et al.

A study of deformation and strain induced in bulk by the oxide layers formation on a Fe-Cr-Al alloy in high-temperature liquid Pb-Bi eutectic

[J]. Acta Mater., 2018, 151: 301

DOI      URL    

Kurata Y.

Corrosion behavior of Si-enriched steels for nuclear applications in liquid lead-bismuth

[J]. J. Nucl. Mater., 2013, 437: 401

DOI      URL    

Short M P, Ballinger R G, Hänninen H E.

Corrosion resistance of alloys F91 and Fe-12Cr-2Si in lead-bismuth eutectic up to 715oC

[J]. J. Nucl. Mater., 2013, 434: 259

DOI      URL    

Chen L Z, Tsisar V, Wang M, et al.

Effect of oxygen on corrosion of an alumina-forming duplex steel in static liquid lead-bismuth eutectic at 550oC

[J]. Corros. Sci., 2021, 189: 109591

DOI      URL    

Wang J, Lu S P, Rong L J, et al.

Effect of silicon on the oxidation resistance of 9 wt.% Cr heat resistance steels in 550oC lead-bismuth eutectic

[J]. Corros. Sci., 2016, 111: 13

DOI      URL    

Shi H, Wang H, Fetzer R, et al.

Influence of Si addition on the corrosion behavior of 9 wt% Cr ferritic/ martensitic steels exposed to oxygen-controlled molten Pb-Bi eutectic at 550 and 600oC

[J]. Corros. Sci., 2021, 193: 109871

DOI      URL    

Ejenstam J, Szakálos P.

Long term corrosion resistance of alumina forming austenitic stainless steels in liquid lead

[J]. J. Nucl. Mater., 2015, 461: 164

DOI      URL     [本文引用: 1]

Chen S H, Rong L J.

Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel

[J]. J. Nucl. Mater., 2015, 459: 13

DOI      URL     [本文引用: 1]

Van Den Bosch J, Coen G, Hosemann P, et al.

On the LME susceptibility of Si enriched steels

[J]. J. Nucl. Mater., 2012, 429: 105

DOI      URL     [本文引用: 1]

Gong X, Sun L, Zhang F F, et al.

Effect of alloying elements on liquid metal embrittlement of pure BCC Fe in contact with liquid lead-bismuth eutectic: Experiments and first principles calculation

[J]. Corros. Sci., 2022, 208: 110522

DOI      URL     [本文引用: 1]

Tan J B, Zhang Q, Wang X, et al.

Slow tension and creep test device in high temperature liquid lead-bismuth environment

[P]. Chin Pat, 202120775739.5, 2021

[本文引用: 1]

谭季波, 张 强, 王 翔 .

高温液态铅铋环境中的慢拉伸及蠕变试验装置

[P]. 中国专利, 202120775739.5, 2021)

[本文引用: 1]

Tan J B, Zhang Q, Wang X, et al.

A fatigue test device in high temperature liquid lead-bismuth environment

[P]. Chin Pat, 2021207-75649.6, 2021

[本文引用: 1]

谭季波, 张 强, 王 翔 .

一种高温液态铅铋环境中的疲劳试验装置

[P]. 中国专利, 202120775649.6, 2021)

[本文引用: 1]

Pan X, Zhang Y P, Dong Z H, et al.

Effect of pre-oxidation treatment on the corrosion resistance in stagnant liquid Pb-Bi eutectic of 12Cr ferritic/martensitic steel

[J]. Acta Metall. Sin., doi: 10.11900/0412.1961.2022.00267

[本文引用: 1]

潘 霞, 张洋鹏, 董志宏 .

预氧化处理对12Cr铁素体/马氏体钢耐Pb-Bi腐蚀性能的影响

[J]. 金属学报, doi: 10.11900/0412.1961.2022.00267

[本文引用: 1]

Roy A, Kumar P, Maitra D.

The effect of silicon content on impact toughness of t91 grade steels

[J]. J. Mater. Eng. Perform., 2009, 18: 205

DOI      URL     [本文引用: 1]

Cabet C, Dalle F, Gaganidze E, et al.

Ferritic-martensitic steels for fission and fusion applications

[J]. J. Nucl. Mater., 2019, 523: 510

DOI      [本文引用: 1]

Compared to austenitic stainless steels, largely employed in the early fission reactors, high chromium Ferritic/Martenstic (FM) steels, developed since the first half of the 20th century for fossil-fuel power-plants, have a number of advantageous properties among which lower thermal expansion, higher thermal conductivity and better void swelling resistance. At the beginning of the 1970s, FM steels found their first nuclear application as wrapper and fuel cladding materials in sodium-cooled fast reactors. They are now the reference materials for in-vessel components of future fusion reactors, and are considered for in-pile and out-of-pile applications in Generation IV reactors as well as for various other nuclear systems. In this paper, after an introductory historical overview, the challenges associated with the use of FM steels in advanced reactors are addressed, including fabrication, joining and codification issues. The long term evolution of mechanical properties such as the creep and creep-fatigue behaviors is discussed and the degradation phenomena occurring in aggressive environments (lead alloys, high temperature gases, super-critical water and CO2, molten salts) are detailed. The paper also provides a brief overview of the radiation effects in FM steels. The influence of the key radiation parameters e.g. temperature, dose and dose rate on the microstructure and mechanical properties are discussed. The need to better understand the synergistic effects of displacement damage and helium produced by transmutation in fusion conditions is highlighted. (C) 2019 Elsevier B.V.

Chen S H, Xie A, Lv X L, et al.

Tailoring microstructure of austenitic stainless steel with improved performance for generation-IV fast reactor application: A review

[J]. Crystals, 2023, 13: 268

DOI      URL     [本文引用: 1]

Austenitic stainless steels are selected as candidate materials for in-core and out-of-core components of Generation-IV fast reactors due to their excellent operating experience in light-water reactors over several decades. However, the performance of conventional austenitic stainless steels proves to be inadequate through operation feedback in fast reactors. To withstand the demands for material performance exposure to the extreme operating environment of fast reactors, modified austenitic stainless steels for in-core and out-of-core components have been developed from the first-generation 300-series steels. The design of an appropriate microstructure becomes a top priority for improving material performance, and key metallurgical features including δ-ferrite content, grain size and secondary phase precipitation pertinent to austenitic stainless steel are focused on in this paper. δ-ferrite content and grain size are closely correlated with the fabrication program and their effects on mechanical properties, especially creep and fatigue properties are critically assessed. Moreover, the impacts of some major elements including nitrogen, stabilization elements (Nb, Ti, V), phosphorus and boron on secondary phase precipitation behaviors during aging or creep are reviewed in detail. Based on the role of the aforementioned metallurgical features, the recommended specification of nitrogen content, stabilization ratio, phosphorus content, boron content, δ-ferrite content and grain size are put forward to guarantee the best-expected performance, which could provide reactors designers with attractive options to optimize fast reactor systems.

Wang Q Y, Chen S H, Rong L J.

δ-Ferrite formation and its effect on the mechanical properties of heavy-section AISI 316 stainless steel casting

[J]. Metall. Mater. Trans., 2020, 51A: 2998

Wang Q Y, Chen S H, Lv X L, et al.

Role of δ-ferrite in fatigue crack growth of AISI 316 austenitic stainless steel

[J]. J. Mater. Sci. Technol., 2022, 114: 7

DOI      URL     [本文引用: 1]

Padilha A F, Rios P R.

Decomposition of austenite in austenitic stainless steels

[J]. ISIJ Int., 2002, 42: 325

DOI      URL     [本文引用: 1]

Etienne A, Radiguet B, Pareige P.

Understanding silicon-rich phase precipitation under irradiation in austenitic stainless steels

[J]. J. Nucl. Mater., 2010, 406: 251

DOI      URL     [本文引用: 1]

Xie A, Chen S H, Wu Y, et al.

Homogenization temperature dependent microstructural evolution and mechanical properties in a Nb-stabilized cast austenitic stainless steel

[J]. Mater. Charact., 2022, 194: 112384

DOI      URL     [本文引用: 1]

/