Please wait a minute...
金属学报  2023, Vol. 59 Issue (4): 489-501    DOI: 10.11900/0412.1961.2022.00486
  综述 本期目录 | 过刊浏览 |
铁磁性三维Ising模型精确解及时间的自发产生
张志东()
中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
Exact Solution of Ferromagnetic Three-Dimensional (3D) Ising Model and Spontaneous Emerge of Time
ZHANG Zhidong()
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

张志东. 铁磁性三维Ising模型精确解及时间的自发产生[J]. 金属学报, 2023, 59(4): 489-501.
Zhidong ZHANG. Exact Solution of Ferromagnetic Three-Dimensional (3D) Ising Model and Spontaneous Emerge of Time[J]. Acta Metall Sin, 2023, 59(4): 489-501.

全文: PDF(1224 KB)   HTML
摘要: 

本文综述在三维Ising模型精确解方面取得的研究进展。首先介绍作者构建的拓扑量子统计物理学,包括时间平均、Jordan-von Neumann-Wigner框架、拓扑结构对热力学性质的贡献等学术思想。然后介绍用Clifford代数方法和Riemann-Hilbert问题的方法证明作者提出的两个猜想,证明在两个猜想基础上推定的三维Ising精确解的正确性。在此基础上,探究了时间的本源,得出三维多体相互作用体系中粒子(自旋)间相互作用自发产生时间的结论。

关键词 Ising模型精确解拓扑量子统计时间多体相互作用    
Abstract

This article reviews recent advances in the exact solution of ferromagnetic three-dimensional (3D) Ising model. First, the topological quantum statistic mechanism was introduced, which includes the time average, Jordan-von Neumann-Wigner framework, and the contribution of topological structures to thermodynamic properties of the system. Then, the Clifford algebra approach and the method of the Riemann-Hilbert problem were introduced to prove Zhang's two conjectures for the exact solution of the ferromagnetic 3D Ising model. The proof process verifies the correctness of the Zhang's exact solution for the ferromagnetic 3D Ising model. Based on these progresses, the origin of time was investigated and driven to the conclusion that in 3D many-body interacting particle (or spin) systems, time emerges spontaneously from many-body interactions.

Key wordsIsing model    exact solution    topological quantum statistic    time    many-body interaction
收稿日期: 2022-10-08     
ZTFLH:  O414.21  
基金资助:国家自然科学基金项目(52031014)
通讯作者: 张志东,zdzhang@imr.ac.cn,主要从事磁性和磁性材料、凝聚态物理、统计物理研究
Corresponding author: ZHANG Zhidong, professor, Tel: (024)23971859, E-mail: zdzhang@imr.ac.cn
作者简介: 张志东,男,1963年生,研究员,博士
图1  与纽结γ的晶格点相连接的转移矩阵 V3 中辫子的3条举例[21]
图2  拓扑结构的交叉与Ising自旋指向(自旋向上、自旋向下)、自旋数值(+1或者-1)之间的映射关系[22]
图3  具有随机交叉分布的二维纽结与一个二维Ising模型之间的映射[22]
图4  一个辫子与一个自旋链的映射关系[22]
图5  三维Ising模型一个晶格单胞示意图[22]
1 Ising E. Beitrag zur theorie des ferromagnetismus [J]. Z. Phys., 1925, 31: 253
doi: 10.1007/BF02980577
2 Onsager L. Crystal statistics. I. A two-dimensional model with an order-disorder transition [J]. Phys. Rev., 1944, 65: 117
doi: 10.1103/PhysRev.65.117
3 Yang C N. The spontaneous magnetization of a two-dimensional Ising model [J]. Phys. Rev., 1952, 85: 808
doi: 10.1103/PhysRev.85.808
4 Zhang Z D. Conjectures on the exact solution of three-dimensional (3D) simple orthorhombic Ising lattices [J]. Phil. Mag., 2007, 87: 5309
doi: 10.1080/14786430701646325
5 Wu F Y, McCoy B M, Fisher M E, et al. Comment on a recent conjectured solution of the three-dimensional Ising model [J]. Philos. Mag., 2008, 88: 3093
doi: 10.1080/14786430802537738
6 Wu F Y, McCoy B M, Fisher M E, et al. Rejoinder to the response to ‘Comment on a recent conjectured solution of the three-dimensional Ising model’ [J]. Philos. Mag., 2008, 88: 3103
doi: 10.1080/14786430802537779
7 Perk J H H. Comment on ‘Conjectures on exact solution of three-dimensional (3D) simple orthorhombic Ising lattices’ [J]. Philos. Mag., 2009, 89: 761
doi: 10.1080/14786430902776970
8 Perk J H H. Rejoinder to the response to the comment on ‘Conjectures on exact solution of three-dimensional (3D) simple orthorhombic Ising lattices’ [J]. Philos. Mag., 2009, 89: 769
doi: 10.1080/14786430902776962
9 Perk J H H. Comment on ‘Mathematical structure of the three-dimensional (3D) Ising model’[J]. Chin. Phys., 2013, 22B: 080508
10 Fisher M E, Perk J H H. Comments concerning the Ising model and two letters by N.H. March [J]. Phys. Lett., 2016, 380A: 1339
11 Zhang Z D. Response to ‘Comment on a recent conjectured solution of the three-dimensional Ising model’ [J]. Philos. Mag., 2008, 88: 3097
doi: 10.1080/14786430802537720
12 Zhang Z D. Response to the comment on ‘Conjectures on exact solution of three-dimensional (3D) simple orthorhombic Ising lattices’ [J]. Philos. Mag., 2009, 89: 765
doi: 10.1080/14786430902776988
13 Zhang Z D. Mathematical structure of the three-dimensional (3D) Ising model [J]. Chin. Phys., 2013, 22B: 030513
14 Ławrynowicz J, Marchiafava S, Niemczynowicz A. An approach to models of order-disorder and Ising lattices [J]. Adv. Appl. Clifford Algebras, 2010, 20: 733
doi: 10.1007/s00006-010-0219-7
15 Ławrynowicz J, Suzuki O, Niemczynowicz A. On the ternary approach to Clifford structures and Ising lattices [J]. Adv. Appl. Clifford Algebras, 2012, 22: 757
doi: 10.1007/s00006-012-0360-6
16 Ławrynowicz J, Nowak-Kȩpczyk M, Suzuki O. Fractals and chaos related to Ising-Onsager-Zhang lattices versus the Jordan-von Neumann-Wigner procedures: Quaternary approach [J]. Int. J. Bifurcation Chaos, 2012, 22: 1230003
doi: 10.1142/S0218127412300030
17 Ławrynowicz J, Suzuki O, Niemczynowicz A, et al. Fractals and chaos related to Ising-Onsager-Zhang lattices. Quaternary approach vs. Ternary approach [J]. Adv. Appl. Clifford Algebras, 2019, 29: 45
doi: 10.1007/s00006-019-0957-0
18 Klein D J, March N H. Critical exponents in D dimensions for the Ising model, subsuming Zhang's proposals for D = 3 [J]. Phys. Lett., 2008, 372A: 5052
19 March N H. Toward a final theory of critical exponents in terms of dimensionality d plus universality class n [J]. Phys. Lett., 2015, 379A: 820
20 Zhang Z D, Suzuki O, March N H. Clifford algebra approach of 3D Ising model [J]. Adv. Appl. Clifford Algebras, 2019, 29: 12
doi: 10.1007/s00006-018-0923-2
21 Suzuki O, Zhang Z D. A method of Riemann-Hilbert problem for Zhang's conjecture 1 in a ferromagnetic 3D Ising model: Trivialization of topological structure [J]. Mathematics, 2021, 9: 776
doi: 10.3390/math9070776
22 Zhang Z D, Suzuki O. A method of the Riemann-Hilbert problem for Zhang's conjecture 2 in a ferromagnetic 3D Ising model: Topological phases [J]. Mathematics, 2021, 9: 2936
doi: 10.3390/math9222936
23 Zhang Z D. Mathematical structure and the conjectured exact solution of three dimensional (3D) Ising model [J]. Acta Metall. Sin., 2016, 52: 1311
23 张志东. 三维Ising模型的数学结构与精确解探索 [J]. 金属学报, 2016, 52: 1311
24 Huang K. Statistical Mechanics [M]. 2nd Ed., New York: John Wiley and Sons Inc., 1987: 341
25 Pathria R K, Beale P D. Statistical Mechanics [M]. 3rd Ed., Singapore: Elsevier, 2011: 1
26 Mattis D C, Swendsen R H. Statistical Mechanics Made Simple [M]. 2nd Ed., Singapore: World Scientific, 2008: 1
27 Tolman R C. The Principles of Statistical Mechanics [M]. New York: Dover Publications Inc., 1979: 1
28 Zhang Z D. Topological quantum statistical mechanics and topological quantum field theories [J]. Symmetry, 2022, 14: 323.
doi: 10.3390/sym14020323
29 Jordan P, Neumann J V, Wigner E. On an algebraic generalization of the quantum mechanical formalism [J]. Ann. Math., 1934, 35: 29
doi: 10.2307/1968117
30 Kogut J B. An introduction to lattice gauge theory and spin systems [J]. Rev. Mod. Phys., 1979, 51: 659
doi: 10.1103/RevModPhys.51.659
31 Witten E. Topological quantum field theory [J]. Commun. Math. Phys., 1988, 117: 353
doi: 10.1007/BF01223371
32 Witten E. Topological sigma models [J]. Commun. Math. Phys., 1988, 118: 411
doi: 10.1007/BF01466725
33 Witten E. Gauge theories and integrable lattice models [J]. Nucl. Phys., 1989, 322B: 629
34 Witten E. Quantum field theory and the Jones polynomial [J]. Commun. Math. Phys., 1989, 121: 351
doi: 10.1007/BF01217730
35 Crane L, Frenkel I B. Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases [J]. J. Math. Phys., 1994, 35: 5136
doi: 10.1063/1.530746
36 Binney J J, Dowrick N J, Fisher A J, et al. The Theory of Critical Phenomena, An Introduction to the Renormalization Group [M]. Oxford: Clarendon Press, 1992: 1
37 Zhang Z D, March N H. Temperature-time duality exemplified by Ising magnets and quantum-chemical many electron theory [J]. J. Math. Chem., 2011, 49, 1283
doi: 10.1007/s10910-011-9820-9
38 Francesco P D, Mathieu P, Sénéchal D. Conformal Field Theory [M]. New York: Springer, 1997: 1
39 Kaufman B. Crystal Statistics. II. Partition function evaluated by spinor analysis [J]. Phys. Rev., 1949, 76: 1232
doi: 10.1103/PhysRev.76.1232
40 Röhrl H. Das Riemann-hilbertsche problem der theorie der linearen differentialgleichungen [J]. Math. Ann., 1957, 133: 1
41 Suzuki O. The problems of Riemann and Hilbert and the relations of Fuchs in several complex variables [A]. Equations Différentielles et Systèmes de Pfaff dans le Champ Complexe [M]. Berlin: Springer, 1979: 325
42 Parisi G. Infinite number of order parameters for spin-glasses [J]. Phys. Rev. Lett., 1979, 43: 1754
doi: 10.1103/PhysRevLett.43.1754
43 Duminil-Copin H. 100 years of the (critical) Ising model on the hypercubic lattice [Z]. arXiv:2208.00864, 2022
44 Zhang Z D. Computational complexity of spin-glass three-dimensional (3D) Ising model [J]. J. Mater. Sci. Technol., 2020, 44: 116
doi: 10.1016/j.jmst.2019.12.009
45 Zhang Z D. Mapping between spin-glass three-dimensional (3D) Ising model and Boolean satisfiability problems [J]. Mathematics, 2023, 11: 237
doi: 10.3390/math11010237
46 Inagaki T, Haribara Y, Igarashi K, et al. A coherent Ising machine for 2000-node optimization problems [J]. Science, 2016, 354: 603
pmid: 27811271
47 Zhang Z D. Exact solution of three-dimensional (3D) Z2 lattice gauge theory [J]. Annals Phys., 2023, under review
48 Zhang Z D. Exact solution of two-dimensional (2D) Ising model with a transverse field: A low-dimensional quantum spin system [J]. Physica, 2021, 128E: 114632
[1] 侯自兵, 徐瑞, 常毅, 曹江海, 文光华, 唐萍. 高碳钢连铸方坯拉坯方向偏析C元素分布的时间序列波动特征[J]. 金属学报, 2018, 54(6): 851-858.
[2] 刘畅, 李树森, 张立峰. RH精炼过程中气液两相流动及混匀现象的模拟研究[J]. 金属学报, 2018, 54(2): 347-356.
[3] 杜瑜宾, 胡小锋, 姜海昌, 闫德胜, 戎利建. 回火时间对Fe-Cr-Ni-Mo高强钢碳化物演变及力学性能的影响[J]. 金属学报, 2018, 54(1): 11-20.
[4] 杨永,王昭东,李天瑞,贾涛,李小琳,王国栋. 一种第二相析出-温度-时间曲线计算模型的建立[J]. 金属学报, 2017, 53(1): 123-128.
[5] 黄军,张永杰,王宝峰,张亚坤,叶鑫,周士凯. 连铸中间包全尺度物理模拟平台建立及应用研究*[J]. 金属学报, 2016, 52(11): 1484-1490.
[6] 张志东. 三维Ising模型的数学结构与精确解探索*[J]. 金属学报, 2016, 52(10): 1311-1325.
[7] 张可, 孙新军, 雍岐龙, 李昭东, 杨庚蔚, 李员妹. 回火时间对高Ti微合金化淬火马氏体钢组织及力学性能的影响*[J]. 金属学报, 2015, 51(5): 553-560.
[8] 张志明 王俭秋 韩恩厚 柯伟. 打磨态690TT合金经不同时间浸泡后表面氧化膜结构分析[J]. 金属学报, 2011, 47(7): 823-830.
[9] 张志明 王俭秋 韩恩厚 柯伟. 电解抛光态690TT合金经不同时间浸泡后表面氧化膜结构分析[J]. 金属学报, 2011, 47(7): 831-838.
[10] 雷洪 赵岩 鲍家琳 刘承军 陈海耿 赫冀成. 多流连铸中间包停留时间分布曲线总体分析方法[J]. 金属学报, 2010, 46(9): 1109-1114.
[11] 舒玮 王学敏 李书瑞 贺信莱. 含Ti复合第二相粒子对微合金钢焊接热影响区组织和性能的影响[J]. 金属学报, 2010, 46(8): 997-1003.
[12] 邹敏明; 张军; 刘林; 傅恒志 . 熔体过热时间对 DD3单晶高温合金凝固组织的影响[J]. 金属学报, 2008, 44(2): 150-154 .
[13] 郜传厚; 刘祥官 . 高炉冶炼过程的混沌性辨识[J]. 金属学报, 2004, 40(4): 347-350 .
[14] 冯妍卉; 王新华 . 反向凝固条件下二元合金一维相变传热的研究[J]. 金属学报, 2000, 36(4): 383-386 .
[15] 田宝辉;李焕喜;张永刚;陈昌麒. Al—Li单晶体锯齿流变的产生机制[J]. 金属学报, 1998, 34(6): 603-608.