|
|
铁磁性三维Ising模型精确解及时间的自发产生 |
张志东( ) |
中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 |
|
Exact Solution of Ferromagnetic Three-Dimensional (3D) Ising Model and Spontaneous Emerge of Time |
ZHANG Zhidong( ) |
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
张志东. 铁磁性三维Ising模型精确解及时间的自发产生[J]. 金属学报, 2023, 59(4): 489-501.
Zhidong ZHANG.
Exact Solution of Ferromagnetic Three-Dimensional (3D) Ising Model and Spontaneous Emerge of Time[J]. Acta Metall Sin, 2023, 59(4): 489-501.
1 |
Ising E. Beitrag zur theorie des ferromagnetismus [J]. Z. Phys., 1925, 31: 253
doi: 10.1007/BF02980577
|
2 |
Onsager L. Crystal statistics. I. A two-dimensional model with an order-disorder transition [J]. Phys. Rev., 1944, 65: 117
doi: 10.1103/PhysRev.65.117
|
3 |
Yang C N. The spontaneous magnetization of a two-dimensional Ising model [J]. Phys. Rev., 1952, 85: 808
doi: 10.1103/PhysRev.85.808
|
4 |
Zhang Z D. Conjectures on the exact solution of three-dimensional (3D) simple orthorhombic Ising lattices [J]. Phil. Mag., 2007, 87: 5309
doi: 10.1080/14786430701646325
|
5 |
Wu F Y, McCoy B M, Fisher M E, et al. Comment on a recent conjectured solution of the three-dimensional Ising model [J]. Philos. Mag., 2008, 88: 3093
doi: 10.1080/14786430802537738
|
6 |
Wu F Y, McCoy B M, Fisher M E, et al. Rejoinder to the response to ‘Comment on a recent conjectured solution of the three-dimensional Ising model’ [J]. Philos. Mag., 2008, 88: 3103
doi: 10.1080/14786430802537779
|
7 |
Perk J H H. Comment on ‘Conjectures on exact solution of three-dimensional (3D) simple orthorhombic Ising lattices’ [J]. Philos. Mag., 2009, 89: 761
doi: 10.1080/14786430902776970
|
8 |
Perk J H H. Rejoinder to the response to the comment on ‘Conjectures on exact solution of three-dimensional (3D) simple orthorhombic Ising lattices’ [J]. Philos. Mag., 2009, 89: 769
doi: 10.1080/14786430902776962
|
9 |
Perk J H H. Comment on ‘Mathematical structure of the three-dimensional (3D) Ising model’[J]. Chin. Phys., 2013, 22B: 080508
|
10 |
Fisher M E, Perk J H H. Comments concerning the Ising model and two letters by N.H. March [J]. Phys. Lett., 2016, 380A: 1339
|
11 |
Zhang Z D. Response to ‘Comment on a recent conjectured solution of the three-dimensional Ising model’ [J]. Philos. Mag., 2008, 88: 3097
doi: 10.1080/14786430802537720
|
12 |
Zhang Z D. Response to the comment on ‘Conjectures on exact solution of three-dimensional (3D) simple orthorhombic Ising lattices’ [J]. Philos. Mag., 2009, 89: 765
doi: 10.1080/14786430902776988
|
13 |
Zhang Z D. Mathematical structure of the three-dimensional (3D) Ising model [J]. Chin. Phys., 2013, 22B: 030513
|
14 |
Ławrynowicz J, Marchiafava S, Niemczynowicz A. An approach to models of order-disorder and Ising lattices [J]. Adv. Appl. Clifford Algebras, 2010, 20: 733
doi: 10.1007/s00006-010-0219-7
|
15 |
Ławrynowicz J, Suzuki O, Niemczynowicz A. On the ternary approach to Clifford structures and Ising lattices [J]. Adv. Appl. Clifford Algebras, 2012, 22: 757
doi: 10.1007/s00006-012-0360-6
|
16 |
Ławrynowicz J, Nowak-Kȩpczyk M, Suzuki O. Fractals and chaos related to Ising-Onsager-Zhang lattices versus the Jordan-von Neumann-Wigner procedures: Quaternary approach [J]. Int. J. Bifurcation Chaos, 2012, 22: 1230003
doi: 10.1142/S0218127412300030
|
17 |
Ławrynowicz J, Suzuki O, Niemczynowicz A, et al. Fractals and chaos related to Ising-Onsager-Zhang lattices. Quaternary approach vs. Ternary approach [J]. Adv. Appl. Clifford Algebras, 2019, 29: 45
doi: 10.1007/s00006-019-0957-0
|
18 |
Klein D J, March N H. Critical exponents in D dimensions for the Ising model, subsuming Zhang's proposals for D = 3 [J]. Phys. Lett., 2008, 372A: 5052
|
19 |
March N H. Toward a final theory of critical exponents in terms of dimensionality d plus universality class n [J]. Phys. Lett., 2015, 379A: 820
|
20 |
Zhang Z D, Suzuki O, March N H. Clifford algebra approach of 3D Ising model [J]. Adv. Appl. Clifford Algebras, 2019, 29: 12
doi: 10.1007/s00006-018-0923-2
|
21 |
Suzuki O, Zhang Z D. A method of Riemann-Hilbert problem for Zhang's conjecture 1 in a ferromagnetic 3D Ising model: Trivialization of topological structure [J]. Mathematics, 2021, 9: 776
doi: 10.3390/math9070776
|
22 |
Zhang Z D, Suzuki O. A method of the Riemann-Hilbert problem for Zhang's conjecture 2 in a ferromagnetic 3D Ising model: Topological phases [J]. Mathematics, 2021, 9: 2936
doi: 10.3390/math9222936
|
23 |
Zhang Z D. Mathematical structure and the conjectured exact solution of three dimensional (3D) Ising model [J]. Acta Metall. Sin., 2016, 52: 1311
|
23 |
张志东. 三维Ising模型的数学结构与精确解探索 [J]. 金属学报, 2016, 52: 1311
|
24 |
Huang K. Statistical Mechanics [M]. 2nd Ed., New York: John Wiley and Sons Inc., 1987: 341
|
25 |
Pathria R K, Beale P D. Statistical Mechanics [M]. 3rd Ed., Singapore: Elsevier, 2011: 1
|
26 |
Mattis D C, Swendsen R H. Statistical Mechanics Made Simple [M]. 2nd Ed., Singapore: World Scientific, 2008: 1
|
27 |
Tolman R C. The Principles of Statistical Mechanics [M]. New York: Dover Publications Inc., 1979: 1
|
28 |
Zhang Z D. Topological quantum statistical mechanics and topological quantum field theories [J]. Symmetry, 2022, 14: 323.
doi: 10.3390/sym14020323
|
29 |
Jordan P, Neumann J V, Wigner E. On an algebraic generalization of the quantum mechanical formalism [J]. Ann. Math., 1934, 35: 29
doi: 10.2307/1968117
|
30 |
Kogut J B. An introduction to lattice gauge theory and spin systems [J]. Rev. Mod. Phys., 1979, 51: 659
doi: 10.1103/RevModPhys.51.659
|
31 |
Witten E. Topological quantum field theory [J]. Commun. Math. Phys., 1988, 117: 353
doi: 10.1007/BF01223371
|
32 |
Witten E. Topological sigma models [J]. Commun. Math. Phys., 1988, 118: 411
doi: 10.1007/BF01466725
|
33 |
Witten E. Gauge theories and integrable lattice models [J]. Nucl. Phys., 1989, 322B: 629
|
34 |
Witten E. Quantum field theory and the Jones polynomial [J]. Commun. Math. Phys., 1989, 121: 351
doi: 10.1007/BF01217730
|
35 |
Crane L, Frenkel I B. Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases [J]. J. Math. Phys., 1994, 35: 5136
doi: 10.1063/1.530746
|
36 |
Binney J J, Dowrick N J, Fisher A J, et al. The Theory of Critical Phenomena, An Introduction to the Renormalization Group [M]. Oxford: Clarendon Press, 1992: 1
|
37 |
Zhang Z D, March N H. Temperature-time duality exemplified by Ising magnets and quantum-chemical many electron theory [J]. J. Math. Chem., 2011, 49, 1283
doi: 10.1007/s10910-011-9820-9
|
38 |
Francesco P D, Mathieu P, Sénéchal D. Conformal Field Theory [M]. New York: Springer, 1997: 1
|
39 |
Kaufman B. Crystal Statistics. II. Partition function evaluated by spinor analysis [J]. Phys. Rev., 1949, 76: 1232
doi: 10.1103/PhysRev.76.1232
|
40 |
Röhrl H. Das Riemann-hilbertsche problem der theorie der linearen differentialgleichungen [J]. Math. Ann., 1957, 133: 1
|
41 |
Suzuki O. The problems of Riemann and Hilbert and the relations of Fuchs in several complex variables [A]. Equations Différentielles et Systèmes de Pfaff dans le Champ Complexe [M]. Berlin: Springer, 1979: 325
|
42 |
Parisi G. Infinite number of order parameters for spin-glasses [J]. Phys. Rev. Lett., 1979, 43: 1754
doi: 10.1103/PhysRevLett.43.1754
|
43 |
Duminil-Copin H. 100 years of the (critical) Ising model on the hypercubic lattice [Z]. arXiv:2208.00864, 2022
|
44 |
Zhang Z D. Computational complexity of spin-glass three-dimensional (3D) Ising model [J]. J. Mater. Sci. Technol., 2020, 44: 116
doi: 10.1016/j.jmst.2019.12.009
|
45 |
Zhang Z D. Mapping between spin-glass three-dimensional (3D) Ising model and Boolean satisfiability problems [J]. Mathematics, 2023, 11: 237
doi: 10.3390/math11010237
|
46 |
Inagaki T, Haribara Y, Igarashi K, et al. A coherent Ising machine for 2000-node optimization problems [J]. Science, 2016, 354: 603
pmid: 27811271
|
47 |
Zhang Z D. Exact solution of three-dimensional (3D) Z2 lattice gauge theory [J]. Annals Phys., 2023, under review
|
48 |
Zhang Z D. Exact solution of two-dimensional (2D) Ising model with a transverse field: A low-dimensional quantum spin system [J]. Physica, 2021, 128E: 114632
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|