|
|
原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响 |
孙腾腾1, 王洪泽1,2( ), 吴一1,2( ), 汪明亮1,2, 王浩伟1,2 |
1.上海交通大学 材料科学与工程学院 金属基复合材料国家重点实验室 上海 200240 2.上海交通大学 安徽(淮北)陶铝新材料研究院 淮北 235000 |
|
Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy |
SUN Tengteng1, WANG Hongze1,2( ), WU Yi1,2( ), WANG Mingliang1,2, WANG Haowei1,2 |
1.State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2.Institute of Alumics Materials, Shanghai Jiao Tong University (Anhui), Huaibei 235000, China |
引用本文:
孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
Tengteng SUN,
Hongze WANG,
Yi WU,
Mingliang WANG,
Haowei WANG.
Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. Acta Metall Sin, 2023, 59(1): 169-179.
1 |
Wang A, Wang H Z, Wu Y, et al. 3D printing of aluminum alloys using laser powder deposition: A review [J]. Int. J. Adv. Manuf. Technol., 2021, 116: 1
doi: 10.1007/s00170-021-07440-5
|
2 |
Shi Y S, Zhang J L, Wen S F, et al. Additive manufacturing and foundry innovation [J]. China Foundry, 2021, 18: 286
doi: 10.1007/s41230-021-1008-8
|
3 |
Molitch-Hou M. Overview of additive manufacturing process [A]. Additive Manufacturing [M]. Oxford: Elsevier, 2018: 1
|
4 |
Sun X F, Song W, Liang J J, et al. Research and development in materials and processes of superalloy fabricated by laser additive manufacturing [J]. Acta Metall. Sin., 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
|
4 |
孙晓峰, 宋 巍, 梁静静 等. 激光增材制造高温合金材料与工艺研究进展 [J]. 金属学报, 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
|
5 |
DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
doi: 10.1016/j.pmatsci.2017.10.001
|
6 |
Geng Y X, Tang H, Xu J H, et al. Formability and mechanical properties of high-strength Al-(Mn, Mg)-(Sc, Zr) alloy produced by selective laser melting [J]. Acta Metall. Sin., 2022, 58: 1044
|
6 |
耿遥祥, 唐 浩, 许俊华 等. 选区激光熔化高强Al-(Mn, Mg)-(Sc, Zr)合金成形性及力学性能 [J]. 金属学报, 2022, 58: 1044
doi: 10.11900/0412.1961.2021.00023
|
7 |
Wen X L, Wang Q Z, Mu Q, et al. Laser solid forming additive manufacturing TiB2 reinforced 2024Al composite: Microstructure and mechanical properties [J]. Mater. Sci. Eng., 2019, A745: 319
|
8 |
Yang H H, W J Y, Wei Q L, et al. Stable cladding of high reflectivity pure copper on the aluminum alloy substrate by an infrared-blue hybrid laser [J]. Addit. Manufact. Lett., 2022, 3: 100040
|
9 |
Lopez-Botello O, Martinez-Hernandez U, Ramírez J, et al. Two-dimensional simulation of grain structure growth within selective laser melted AA-2024 [J]. Mater. Des., 2017, 113: 369
doi: 10.1016/j.matdes.2016.10.031
|
10 |
Zhang C, Zhang H, Wang L, et al. Microcracking and mechanical properties in laser-arc hybrid welding of wrought Al-6Cu aluminum alloy [J]. Metall. Mater. Trans., 2018, 49A: 4441
|
11 |
Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys [J]. Nature, 2017, 549: 365
doi: 10.1038/nature23894
|
12 |
Tan Q Y, Zhang J Q, Sun Q, et al. Inoculation treatment of an additively manufactured 2024 aluminium alloy with titanium nanoparticles [J]. Acta Mater., 2020, 196: 1
doi: 10.1016/j.actamat.2020.06.026
|
13 |
Li X P, Kong C, Becker T, et al. Investigation of interfacial reaction products and stress distribution in selective laser melted Al12Si/SiC composite using confocal Raman microscopy [J]. Adv. Eng. Mater., 2016, 18: 1337
doi: 10.1002/adem.201600150
|
14 |
Sun T T, Xiao Y K, Luo G D, et al. Roadmap to improve the printability of a non-castable alloy for additive manufacturing [J]. Metall. Mater. Trans., 2022, 53A: 2780
|
15 |
Sun T T, Wang H Z, Gao Z Y, et al. The role of in-situ nano-TiB2 particles in improving the printability of noncastable 2024Al alloy [J]. Mater. Res. Lett., 2022, 10: 656
doi: 10.1080/21663831.2022.2080514
|
16 |
Fiocchi J, Tuissi A, Biffi C A. Heat treatment of aluminium alloys produced by laser powder bed fusion: A review [J]. Mater. Des., 2021, 204: 109651
doi: 10.1016/j.matdes.2021.109651
|
17 |
Xiao Y K, Bian Z Y, Wu Y, et al. Simultaneously minimizing residual stress and enhancing strength of selective laser melted nano-TiB2 decorated Al alloy via post-uphill quenching and ageing [J]. Mater. Charact., 2021, 178: 111242
doi: 10.1016/j.matchar.2021.111242
|
18 |
Li W, Li S, Liu J, et al. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism [J]. Mater. Sci. Eng., 2016, A663: 116
|
19 |
Malikov A, Orishich A, Vitoshkin I, et al. Effect of post-heat treatment on microstructure and mechanical properties of laser welded Al-Cu-Mg alloy [J]. J. Manuf. Process., 2021, 64: 620
doi: 10.1016/j.jmapro.2021.02.008
|
20 |
Tao Y, Zhang Z, Xue P, et al. Effect of post weld artificial aging and water cooling on microstructure and mechanical properties of friction stir welded 2198-T8 Al-Li joints [J]. J. Mater. Sci. Technol., 2022, 123: 92
doi: 10.1016/j.jmst.2022.01.020
|
21 |
Sun T T, Chen J, Wu Y, et al. Achieving excellent strength of the LPBF additively manufactured Al-Cu-Mg composite via in-situ mixing TiB2 and solution treatment [J]. Mater. Sci. Eng., 2022, A850: 143531
|
22 |
Thapliyal S, Shukla S, Zhou L, et al. Design of heterogeneous structured Al alloys with wide processing window for laser-powder bed fusion additive manufacturing [J]. Addit. Manuf., 2021, 42: 102002
|
23 |
Hooper P A. Melt pool temperature and cooling rates in laser powder bed fusion [J]. Addit. Manuf., 2018, 22: 548
|
24 |
Zhang H Y, Li J M, Sun J L, et al. Theoretical analysis for condensation heat transfer of binary refrigerant mixtures with annular flow in horizontal mini-tubes [J]. Heat Mass Transfer, 2016, 52: 47
doi: 10.1007/s00231-015-1596-1
|
25 |
Olakanmi E O, Cochrane R F, Dalgarno K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties [J]. Prog. Mater. Sci., 2015, 74: 401
doi: 10.1016/j.pmatsci.2015.03.002
|
26 |
Wang W Q, Wang S Y, Chen F, et al. Microstructure and mechanical properties of TiN/Inconel 718 composites fabricated by selective laser melting [J]. Acta Metall. Sin., 2021, 57: 1017
doi: 10.11900/0412.1961.2020.00485
|
26 |
王文权, 王苏煜, 陈 飞 等. 选区激光熔化成形TiN/Inconel 718复合材料的组织和力学性能 [J]. 金属学报, 2021, 57: 1017
doi: 10.11900/0412.1961.2020.00485
|
27 |
Li X P, Ji G, Chen Z, et al. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility [J]. Acta Mater., 2017, 129: 183
doi: 10.1016/j.actamat.2017.02.062
|
28 |
Liu Y X, Wang R C, Peng C Q, et al. Microstructural evolution and mechanical performance of in-situ TiB2/AlSi10Mg composite manufactured by selective laser melting [J]. J. Alloys Compd., 2021, 853: 157287
doi: 10.1016/j.jallcom.2020.157287
|
29 |
Wang P, Gammer C, Brenne F, et al. A heat treatable TiB2/Al-3.5Cu-1.5Mg-1Si composite fabricated by selective laser melting: Microstructure, heat treatment and mechanical properties [J]. Composites, 2018, 147B: 162
|
30 |
McPeak K M, Jayanti S V, Kress S J P, et al. Plasmonic films can easily be better: Rules and recipes [J]. ACS Photonics, 2015, 2: 326
pmid: 25950012
|
31 |
Cui H C, Lu F G, Peng K, et al. Comparison of laser welding between TiB2/ZL101 composites and ZL101 [J]. Weld. Joining, 2010, (3): 48
|
31 |
崔海超, 芦凤桂, 彭 坤 等. TiB2/ZL101复合材料与ZL101合金激光焊对比研究 [J]. 焊接, 2010, (3): 48
|
32 |
Ma Y, Addad A, Ji G, et al. Atomic-scale investigation of the interface precipitation in a TiB2 nanoparticles reinforced Al-Zn-Mg-Cu matrix composite [J]. Acta Mater., 2020, 185: 287
doi: 10.1016/j.actamat.2019.11.068
|
33 |
Mohamed I F, Masuda T, Lee S, et al. Strengthening of A2024 alloy by high-pressure torsion and subsequent aging [J]. Mater. Sci. Eng., 2017, A704: 112
|
34 |
Jia Q B, Rometsch P, Kürnsteiner P, et al. Selective laser melting of a high strength Al-Mn-Sc alloy: Alloy design and strengthening mechanisms [J]. Acta Mater., 2019, 171: 108
doi: 10.1016/j.actamat.2019.04.014
|
35 |
Ma K K, Wen H M, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy [J]. Acta Mater., 2014, 62: 141
doi: 10.1016/j.actamat.2013.09.042
|
36 |
Zhang J L, Song B, Yang L, et al. Microstructure evolution and mechanical properties of TiB/Ti6Al4V gradient-material lattice structure fabricated by laser powder bed fusion [J]. Composites, 2020, 202B: 108417
|
37 |
Hadadzadeh A, Baxter C, Amirkhiz B S, et al. Strengthening mechanisms in direct metal laser sintered AlSi10Mg: Comparison between virgin and recycled powders [J]. Addit. Manuf., 2018, 23: 108
|
38 |
Considére A. Mémoire sur l'emploi du fer et de l'acier dans les constructions [J]. Ann. Ponts Chaussées, 1885, 9: 574
|
39 |
Xiao Y K, Chen H, Bian Z Y, et al. Enhancing strength and ductility of AlSi10Mg fabricated by selective laser melting by TiB2 nanoparticles [J]. J. Mater. Sci. Technol., 2022, 109: 254
doi: 10.1016/j.jmst.2021.08.030
|
40 |
Chen B, Moon S K, Yao X, et al. Strength and strain hardening of a selective laser melted AlSi10Mg alloy [J]. Scr. Mater., 2017, 141: 45
doi: 10.1016/j.scriptamat.2017.07.025
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|