Please wait a minute...
金属学报  2023, Vol. 59 Issue (1): 147-156    DOI: 10.11900/0412.1961.2022.00442
  研究论文 本期目录 | 过刊浏览 |
粉末粒径对AlSi10Mg合金选区激光熔化成形的影响
王孟, 杨永强, Trofimov Vyacheslav, 宋长辉, 周瀚翔, 王迪()
华南理工大学 机械与汽车工程学院 广州 510640
Effects of Particle Size on Processability of AlSi10Mg Alloy Manufactured by Selective Laser Melting
WANG Meng, YANG Yongqiang, Trofimov Vyacheslav, SONG Changhui, ZHOU Hanxiang, WANG Di()
School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
引用本文:

王孟, 杨永强, Trofimov Vyacheslav, 宋长辉, 周瀚翔, 王迪. 粉末粒径对AlSi10Mg合金选区激光熔化成形的影响[J]. 金属学报, 2023, 59(1): 147-156.
Meng WANG, Yongqiang YANG, Vyacheslav Trofimov, Changhui SONG, Hanxiang ZHOU, Di WANG. Effects of Particle Size on Processability of AlSi10Mg Alloy Manufactured by Selective Laser Melting[J]. Acta Metall Sin, 2023, 59(1): 147-156.

全文: PDF(4137 KB)   HTML
摘要: 

通过模拟仿真与实验结合研究粉末粒径对选区激光熔化(SLM)可加工性的影响。以3种粒径AlSi10Mg粉末为对象,基于离散元和流体力学数值模拟方法研究SLM铺粉和粉末熔化/凝固介观行为,并对成形样品进行宏观成形质量检测。结果表明,铺粉过程中,粒径小于20 μm的粉末剧烈团聚形成大量空隙,粒径大于53 μm粉末易形成少量大的空隙,中等粒径粉末床相对密度比细粒径和大粒径分别高7.69%和3.17%。单层粉末床熔融时,铺粉质量不均匀,细粒径与粗粒径熔道不规则。但经历多层熔化后,细粒径熔道缺陷部分缓解。随着粒径的增加,熔道表面平整度下降,细粒径粉末样品存在较多孔隙,粗粒径粉末存在少量未熔合缺陷。中等粒径粉末SLM可加工性最好,样品相对密度达到99.8%,比细粒径和粗粒径分别高1.4%和0.4%。

关键词 选区激光熔化粉末粒径铺粉模拟介观模拟可加工性    
Abstract

Selective laser melting (SLM) is a widely used high-precision additive manufacturing technology that can achieve arbitrarily complex structures. The powder size used by SLM is generally 15-53 μm, which is suitable for manufacturing parts with a forming accuracy within tens of microns. However, the reason why smaller or larger particle size powders are not suitable is not yet clear. The effect of particle size on SLM processability was studied by simulation and experimentation. Three powder particle sizes of AlSi10Mg were used to study the behavior of powder spreading and melting/solidification during SLM by discrete element and computational fluid dynamics methods, respectively. The macroscopic forming quality of the formed samples was tested. The results show that the powders with a particle size below 20 μm agglomerate vigorously to form many cavities, and the powders with a particle size above 53 μm tend to form few large cavities. The relative density of the powder bed with the medium particle size is 7.69% and 3.17% higher than those of the fine and large particle sizes, respectively. The melt channels of the fine and coarse particle sizes are irregular due to the uneven quality of powder laying when the powder bed is melted. However, after multilayer melting, defects in the melt channel of the fine particle size are partially alleviated. With the increase in particle size, the melt channel surface flatness decreases, the fine particle size powder samples have more porosity, and the coarse particle size powder has a few unfused defects. The processability of the medium particle size for SLM is the best among them. The relative density of the sample with the medium particle size reach 99.8%, which is 1.4% and 0.4% higher than those of samples with fine and coarse particle sizes, respectively.

Key wordsselective laser melting    particle size    powder spreading simulation    mesoscopic simulation    processability
收稿日期: 2022-09-06     
ZTFLH:  TG111.3  
基金资助:国家自然科学基金项目(U2001218);广东省基础与应用基础研究基金项目(2022B1515020064)
作者简介: 王 孟,男,1995年生,博士生
图1  休止角和铺粉离散元方法(DEM)物理模型
PowderZnSiNiFeMnMgAl
PSD10.01110.240.0220.140.010.35Bal.
PSD20.0109.660.0200.100.200.42Bal.
PSD30.0099.740.0030.100.030.28Bal.
表1  不同粒径AlSi10Mg粉末的化学成分 (mass fraction / %)
图2  3种粒径AlSi10Mg粉末粒径分布及SEM像
ParameterUnitValueVariable
range
Particle density ρkg·m-32680-
Poisson's ratio ɛ0.3-
Young's modulus EMPa750-
Rolling friction coefficient μr0.09-
Sliding friction coefficient μs0.60.4-0.8
Restitution coefficient rs0.64-
Surface energy density γmJ·m-21.20-15
L1mm2-
L2mm42-6
W10D502D50-10D50
H05D501D50-5D50
L3mm1-
Vmm·s-150-
表2  DEM模型使用参数及参数范围
图3  DEM模拟铺粉过程的动态堆积角
图4  DEM模拟的3种粒径粉末床切片图和俯视图
图5  DEM模拟的3种粉末床相对密度
图6  计算流体力学模拟的选区激光熔化熔道形貌及熔池温度分布曲线
图7  3种粒径样品上表面轮廓高度和超景深三维显微镜像
图8  3种粒径样品上表面形貌的SEM像
图9  3种粒径样品水平和竖直截面孔隙分布的OM像
图10  不同能量密度下3种粒径样品相对密度
1 Geng Y X, Fan S M, Jian J L, et al. Mechanical properties of AlSiMg alloy specifically designed for selective laser melting [J]. Acta Metall. Sin., 2020, 56: 821
doi: 10.11900/0412.1961.2019.00306
1 耿遥祥, 樊世敏, 简江林 等. 选区激光熔化专用AlSiMg合金成分设计及力学性能 [J]. 金属学报, 2020, 56: 821
doi: 10.11900/0412.1961.2019.00306
2 Si L, Zhang T F, Zhou M Y, et al. Numerical simulation of the flow behavior and powder spreading mechanism in powder bed-based additive manufacturing [J]. Powder Technol., 2021, 394: 1004
doi: 10.1016/j.powtec.2021.09.010
3 Chen H, Chen Y X, Liu Y, et al. Packing quality of powder layer during counter-rolling-type powder spreading process in additive manufacturing [J]. Int. J. Mach. Tools Manuf., 2020, 153: 103553
doi: 10.1016/j.ijmachtools.2020.103553
4 Tsuji Y, Tanaka T, Ishida T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe [J]. Powder Technol., 1992, 71: 239
doi: 10.1016/0032-5910(92)88030-L
5 Ma Y F, Evans T M, Philips N, et al. Numerical simulation of the effect of fine fraction on the flowability of powders in additive manufacturing [J]. Powder Technol., 2020, 360: 608
doi: 10.1016/j.powtec.2019.10.041
6 Han Q Q, Gu H, Setchi R. Discrete element simulation of powder layer thickness in laser additive manufacturing [J]. Powder Technol., 2019, 352: 91
doi: 10.1016/j.powtec.2019.04.057
7 Chen H, Wei Q S, Zhang Y J, et al. Powder-spreading mechanisms in powder-bed-based additive manufacturing: Experiments and computational modeling [J]. Acta Mater., 2019, 179: 158
doi: 10.1016/j.actamat.2019.08.030
8 Yao D Z, An X Z, Fu H T, et al. Dynamic investigation on the powder spreading during selective laser melting additive manufacturing [J]. Addit. Manuf., 2021, 37: 101707
9 He Y, Hassanpour A, Bayly A E. Combined effect of particle size and surface cohesiveness on powder spreadability for additive manufacturing [J]. Powder Technol., 2021, 392: 191
doi: 10.1016/j.powtec.2021.06.046
0 Wang L, Li E L, Shen H, et al. Adhesion effects on spreading of metal powders in selective laser melting [J]. Powder Technol., 2020, 363: 602
doi: 10.1016/j.powtec.2019.12.048
11 Muñiz-Lerma J A, Nommeots-Nomm A, Waters K E, et al. A comprehensive approach to powder feedstock characterization for powder bed fusion additive manufacturing: A case study on AlSi7Mg [J]. Materials, 2018, 11: 2386
doi: 10.3390/ma11122386
12 Balbaa M A, Ghasemi A, Fereiduni E, et al. Role of powder particle size on laser powder bed fusion processability of AlSi10Mg alloy [J]. Addit. Manuf., 2021, 37: 101630
13 Gu D D, Xia M J, Dai D H. On the role of powder flow behavior in fluid thermodynamics and laser processability of Ni-based composites by selective laser melting [J]. Int. J. Mach. Tools Manuf., 2019, 137: 67
doi: 10.1016/j.ijmachtools.2018.10.006
14 Gilabert F A, Roux J N, Castellanos A. Computer simulation of model cohesive powders: Influence of assembling procedure and contact laws on low consolidation states [J]. Phys. Rev., 2007, 75E: 011303
15 Lee K F, Dosta M, McGuire A D, et al. Development of a multi-compartment population balance model for high-shear wet granulation with discrete element method [J]. Comput. Chem. Eng., 2017, 99: 171
doi: 10.1016/j.compchemeng.2017.01.022
16 Wang Y, Wang J J, Zhang H, et al. Effects of heat treatments on microstructure and mechanical properties of AlSi10Mg alloy produced by selective laser melting [J]. Acta Metall. Sin., 2021, 57: 613
doi: 10.11900/0412.1961.2020.00253
16 王 悦, 王继杰, 张 昊 等. 热处理对激光选区熔化AlSi10Mg合金显微组织及力学性能的影响 [J]. 金属学报, 2021, 57: 613
17 Bidare P, Maier R R J, Beck R J, et al. An open-architecture metal powder bed fusion system for in-situ process measurements [J]. Addit. Manuf., 2017, 16: 177
18 Tang C, Tan J L, Wong C H. A numerical investigation on the physical mechanisms of single track defects in selective laser melting [J]. Int. J. Heat Mass Transfer, 2018, 126: 957
doi: 10.1016/j.ijheatmasstransfer.2018.06.073
19 Zhang Y, Zhang J. Modeling of solidification microstructure evolution in laser powder bed fusion fabricated 316L stainless steel using combined computational fluid dynamics and cellular automata [J]. Addit. Manuf., 2019, 28: 750
doi: 10.1016/j.addma.2019.06.024
20 Chiumenti M, Lin X, Cervera M, et al. Numerical simulation and experimental calibration of additive manufacturing by blown powder technology. Part I: thermal analysis [J]. Rapid Prototyping J., 2017, 23: 448
doi: 10.1108/RPJ-10-2015-0136
21 Zheng M, Wei L, Chen J, et al. A novel method for the molten pool and porosity formation modelling in selective laser melting [J]. Int. J. Heat Mass Transfer, 2019, 140: 1091
doi: 10.1016/j.ijheatmasstransfer.2019.06.038
22 Zheng M, Wei L, Chen J, et al. On the role of energy input in the surface morphology and microstructure during selective laser melting of Inconel 718 alloy [J]. J. Mater. Res. Technol., 2021, 11: 392
doi: 10.1016/j.jmrt.2021.01.024
23 Wei H L, Liu F Q, Wei L, et al. Multiscale and multiphysics explorations of the transient deposition processes and additive characteristics during laser 3D printing [J]. J. Mater. Sci. Technol., 2021, 77: 196
doi: 10.1016/j.jmst.2020.11.032
24 Wang L, Yan W T. Thermoelectric magnetohydrodynamic model for laser-based metal additive manufacturing [J]. Phys. Rev. Appl., 2021, 15: 064051
25 Chen H, Wei Q S, Wen S F, et al. Flow behavior of powder particles in layering process of selective laser melting: Numerical modeling and experimental verification based on discrete element method [J]. Int. J. Mach. Tools Manuf., 2017, 123: 146
doi: 10.1016/j.ijmachtools.2017.08.004
26 Khairallah S A, Anderson A T, Rubenchik A, et al. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones [J]. Acta Mater., 2016, 108: 36
doi: 10.1016/j.actamat.2016.02.014
27 Zhang J L, Song B, Wei Q S, et al. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends [J]. J. Mater. Sci. Technol., 2019, 35: 270
doi: 10.1016/j.jmst.2018.09.004
28 Yu G Q, Gu D D, Dai D H, et al. On the role of processing parameters in thermal behavior, surface morphology and accuracy during laser 3D printing of aluminum alloy [J]. J. Phys., 2016, 49D: 135501
[1] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[2] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[3] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[4] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[5] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[6] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[7] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[8] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[9] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[10] 刘广, 陈鹏, 姚锡禹, 陈朴, 刘星辰, 刘朝阳, 严明. CrMoTi中熵合金的性能及其原位合金化增材制造[J]. 金属学报, 2022, 58(8): 1055-1064.
[11] 耿遥祥, 唐浩, 许俊华, 张志杰, 喻利花, 鞠洪博, 江乐, 简江林. 选区激光熔化高强Al-(Mn, Mg)-(Sc, Zr)合金成形性及力学性能[J]. 金属学报, 2022, 58(8): 1044-1054.
[12] 林研, 司丞, 徐京豫, 刘泽, 张诚, 柳林. 选区激光熔化高强韧铝合金的异质结构调控及力学性能[J]. 金属学报, 2022, 58(11): 1509-1518.
[13] 王凯冬, 刘允中, 詹强坤, 黄斌. 形核剂的添加方式对选区激光熔化成形含锆Al-Cu-Mg合金显微组织与力学性能的影响[J]. 金属学报, 2022, 58(10): 1281-1291.
[14] 王文权, 王苏煜, 陈飞, 张新戈, 徐宇欣. 选区激光熔化成形TiN/Inconel 718复合材料的组织和力学性能[J]. 金属学报, 2021, 57(8): 1017-1026.
[15] 刘健, 彭钦, 谢建新. 选区激光熔化René 88DT高温合金的晶粒组织及冶金缺陷调控[J]. 金属学报, 2021, 57(2): 191-204.