|
|
粉末粒径对AlSi10Mg合金选区激光熔化成形的影响 |
王孟, 杨永强, Trofimov Vyacheslav, 宋长辉, 周瀚翔, 王迪( ) |
华南理工大学 机械与汽车工程学院 广州 510640 |
|
Effects of Particle Size on Processability of AlSi10Mg Alloy Manufactured by Selective Laser Melting |
WANG Meng, YANG Yongqiang, Trofimov Vyacheslav, SONG Changhui, ZHOU Hanxiang, WANG Di( ) |
School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China |
引用本文:
王孟, 杨永强, Trofimov Vyacheslav, 宋长辉, 周瀚翔, 王迪. 粉末粒径对AlSi10Mg合金选区激光熔化成形的影响[J]. 金属学报, 2023, 59(1): 147-156.
Meng WANG,
Yongqiang YANG,
Vyacheslav Trofimov,
Changhui SONG,
Hanxiang ZHOU,
Di WANG.
Effects of Particle Size on Processability of AlSi10Mg Alloy Manufactured by Selective Laser Melting[J]. Acta Metall Sin, 2023, 59(1): 147-156.
1 |
Geng Y X, Fan S M, Jian J L, et al. Mechanical properties of AlSiMg alloy specifically designed for selective laser melting [J]. Acta Metall. Sin., 2020, 56: 821
doi: 10.11900/0412.1961.2019.00306
|
1 |
耿遥祥, 樊世敏, 简江林 等. 选区激光熔化专用AlSiMg合金成分设计及力学性能 [J]. 金属学报, 2020, 56: 821
doi: 10.11900/0412.1961.2019.00306
|
2 |
Si L, Zhang T F, Zhou M Y, et al. Numerical simulation of the flow behavior and powder spreading mechanism in powder bed-based additive manufacturing [J]. Powder Technol., 2021, 394: 1004
doi: 10.1016/j.powtec.2021.09.010
|
3 |
Chen H, Chen Y X, Liu Y, et al. Packing quality of powder layer during counter-rolling-type powder spreading process in additive manufacturing [J]. Int. J. Mach. Tools Manuf., 2020, 153: 103553
doi: 10.1016/j.ijmachtools.2020.103553
|
4 |
Tsuji Y, Tanaka T, Ishida T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe [J]. Powder Technol., 1992, 71: 239
doi: 10.1016/0032-5910(92)88030-L
|
5 |
Ma Y F, Evans T M, Philips N, et al. Numerical simulation of the effect of fine fraction on the flowability of powders in additive manufacturing [J]. Powder Technol., 2020, 360: 608
doi: 10.1016/j.powtec.2019.10.041
|
6 |
Han Q Q, Gu H, Setchi R. Discrete element simulation of powder layer thickness in laser additive manufacturing [J]. Powder Technol., 2019, 352: 91
doi: 10.1016/j.powtec.2019.04.057
|
7 |
Chen H, Wei Q S, Zhang Y J, et al. Powder-spreading mechanisms in powder-bed-based additive manufacturing: Experiments and computational modeling [J]. Acta Mater., 2019, 179: 158
doi: 10.1016/j.actamat.2019.08.030
|
8 |
Yao D Z, An X Z, Fu H T, et al. Dynamic investigation on the powder spreading during selective laser melting additive manufacturing [J]. Addit. Manuf., 2021, 37: 101707
|
9 |
He Y, Hassanpour A, Bayly A E. Combined effect of particle size and surface cohesiveness on powder spreadability for additive manufacturing [J]. Powder Technol., 2021, 392: 191
doi: 10.1016/j.powtec.2021.06.046
|
0 |
Wang L, Li E L, Shen H, et al. Adhesion effects on spreading of metal powders in selective laser melting [J]. Powder Technol., 2020, 363: 602
doi: 10.1016/j.powtec.2019.12.048
|
11 |
Muñiz-Lerma J A, Nommeots-Nomm A, Waters K E, et al. A comprehensive approach to powder feedstock characterization for powder bed fusion additive manufacturing: A case study on AlSi7Mg [J]. Materials, 2018, 11: 2386
doi: 10.3390/ma11122386
|
12 |
Balbaa M A, Ghasemi A, Fereiduni E, et al. Role of powder particle size on laser powder bed fusion processability of AlSi10Mg alloy [J]. Addit. Manuf., 2021, 37: 101630
|
13 |
Gu D D, Xia M J, Dai D H. On the role of powder flow behavior in fluid thermodynamics and laser processability of Ni-based composites by selective laser melting [J]. Int. J. Mach. Tools Manuf., 2019, 137: 67
doi: 10.1016/j.ijmachtools.2018.10.006
|
14 |
Gilabert F A, Roux J N, Castellanos A. Computer simulation of model cohesive powders: Influence of assembling procedure and contact laws on low consolidation states [J]. Phys. Rev., 2007, 75E: 011303
|
15 |
Lee K F, Dosta M, McGuire A D, et al. Development of a multi-compartment population balance model for high-shear wet granulation with discrete element method [J]. Comput. Chem. Eng., 2017, 99: 171
doi: 10.1016/j.compchemeng.2017.01.022
|
16 |
Wang Y, Wang J J, Zhang H, et al. Effects of heat treatments on microstructure and mechanical properties of AlSi10Mg alloy produced by selective laser melting [J]. Acta Metall. Sin., 2021, 57: 613
doi: 10.11900/0412.1961.2020.00253
|
16 |
王 悦, 王继杰, 张 昊 等. 热处理对激光选区熔化AlSi10Mg合金显微组织及力学性能的影响 [J]. 金属学报, 2021, 57: 613
|
17 |
Bidare P, Maier R R J, Beck R J, et al. An open-architecture metal powder bed fusion system for in-situ process measurements [J]. Addit. Manuf., 2017, 16: 177
|
18 |
Tang C, Tan J L, Wong C H. A numerical investigation on the physical mechanisms of single track defects in selective laser melting [J]. Int. J. Heat Mass Transfer, 2018, 126: 957
doi: 10.1016/j.ijheatmasstransfer.2018.06.073
|
19 |
Zhang Y, Zhang J. Modeling of solidification microstructure evolution in laser powder bed fusion fabricated 316L stainless steel using combined computational fluid dynamics and cellular automata [J]. Addit. Manuf., 2019, 28: 750
doi: 10.1016/j.addma.2019.06.024
|
20 |
Chiumenti M, Lin X, Cervera M, et al. Numerical simulation and experimental calibration of additive manufacturing by blown powder technology. Part I: thermal analysis [J]. Rapid Prototyping J., 2017, 23: 448
doi: 10.1108/RPJ-10-2015-0136
|
21 |
Zheng M, Wei L, Chen J, et al. A novel method for the molten pool and porosity formation modelling in selective laser melting [J]. Int. J. Heat Mass Transfer, 2019, 140: 1091
doi: 10.1016/j.ijheatmasstransfer.2019.06.038
|
22 |
Zheng M, Wei L, Chen J, et al. On the role of energy input in the surface morphology and microstructure during selective laser melting of Inconel 718 alloy [J]. J. Mater. Res. Technol., 2021, 11: 392
doi: 10.1016/j.jmrt.2021.01.024
|
23 |
Wei H L, Liu F Q, Wei L, et al. Multiscale and multiphysics explorations of the transient deposition processes and additive characteristics during laser 3D printing [J]. J. Mater. Sci. Technol., 2021, 77: 196
doi: 10.1016/j.jmst.2020.11.032
|
24 |
Wang L, Yan W T. Thermoelectric magnetohydrodynamic model for laser-based metal additive manufacturing [J]. Phys. Rev. Appl., 2021, 15: 064051
|
25 |
Chen H, Wei Q S, Wen S F, et al. Flow behavior of powder particles in layering process of selective laser melting: Numerical modeling and experimental verification based on discrete element method [J]. Int. J. Mach. Tools Manuf., 2017, 123: 146
doi: 10.1016/j.ijmachtools.2017.08.004
|
26 |
Khairallah S A, Anderson A T, Rubenchik A, et al. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones [J]. Acta Mater., 2016, 108: 36
doi: 10.1016/j.actamat.2016.02.014
|
27 |
Zhang J L, Song B, Wei Q S, et al. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends [J]. J. Mater. Sci. Technol., 2019, 35: 270
doi: 10.1016/j.jmst.2018.09.004
|
28 |
Yu G Q, Gu D D, Dai D H, et al. On the role of processing parameters in thermal behavior, surface morphology and accuracy during laser 3D printing of aluminum alloy [J]. J. Phys., 2016, 49D: 135501
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|