Please wait a minute...
金属学报  2022, Vol. 58 Issue (9): 1150-1158    DOI: 10.11900/0412.1961.2021.00076
  研究论文 本期目录 | 过刊浏览 |
SiCf/TiAl复合材料界面反应及热稳定性
沈莹莹1,2, 张国兴1, 贾清1(), 王玉敏1, 崔玉友1, 杨锐1()
1.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2.中国科学技术大学 材料科学与工程学院 沈阳 110016
Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites
SHEN Yingying1,2, ZHANG Guoxing1, JIA Qing1(), WANG Yumin1, CUI Yuyou1, YANG Rui1()
1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
Yingying SHEN, Guoxing ZHANG, Qing JIA, Yumin WANG, Yuyou CUI, Rui YANG. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. Acta Metall Sin, 2022, 58(9): 1150-1158.

全文: PDF(2252 KB)   HTML
摘要: 

采用真空吸铸法制备了SiCf/TiAl复合材料,利用SEM和TEM对制备态复合材料界面反应层进行元素扩散分析和产物确定。结果表明,制备态复合材料的界面反应产物主要由靠近碳层的等轴细晶TiC和靠近钛合金涂层的等轴粗晶TiC组成。对复合材料进行800℃热暴露实验,结果显示,界面反应层随热暴露时间的延长而增长,且在长大过程中出现了分层现象。根据热暴露后反应层厚度随时间的变化规律,绘制出800℃界面反应的动力学曲线,并推测出界面生长速率。热暴露200 h后的界面反应产物共有4层,从纤维一侧到基体一侧分别是细晶TiC层、粗晶TiC层、(Ti, Zr)5Si4层和Ti3Sn + Ti2AlC层。分别对制备态和热暴露态的SiCf/TiAl复合材料界面反应产物的形成机理进行了分析,得出热暴露过程中界面分层出现的主要原因是Ti2AlC新相的生成消耗了部分TiC相。

关键词 SiCf/TiAl复合材料真空吸铸界面反应层产物元素扩散    
Abstract

SiC-fiber-reinforced γ-TiAl composite materials are promising for high-temperature structural applications owing to their excellent mechanical properties. However, the interfacial reaction of the composites during subsequent high-temperature processing and service is unstable as elements continue to diffuse around the interfacial reaction layer at high temperatures, and more interfacial reaction products are generated. When excessive brittle reaction products are generated, they have detrimental effects on the mechanical properties of the composites. Therefore, to better design and control the interfacial reaction, it is particularly important to study the formation and growth of the complex interfacial products of the composites. In this study, the formation mechanism of interfacial reaction products and thermal stability of SiCf/TiAl composites were investigated by thermal exposure for different time. First, the SiCf/TiAl composites were prepared by suction casting. Next, the specimens were examined by SEM and TEM to investigate the element diffusion and composition of the interfacial reaction products of the as-prepared composites. The interfacial reaction products in the as-prepared composites were mainly composed of a fine equiaxed TiC layer near a carbon layer and a coarse equiaxed TiC layer near a titanium alloy coating. Then, the thermal exposure was conducted at 800oC to investigate the growth of the interfacial reaction products and thermal stability of the interfacial reaction layer. The results show that the thickness of the interfacial reaction layer increased with heat exposure time. Meanwhile, interfacial stratification was observed during the growth of the interface reaction layer. Further, the growth kinetics curve of the reaction layer was drew according to the thickness of the reaction layer with time, and the interfacial reaction growth rate was determined. According to the morphology and TEM analysis results, the interfacial reaction layer was divided into four layers after 200 h thermal exposure, unlike in the as-prepared state. From the fiber side to matrix side, fine-grained TiC, coarse-grained TiC, (Ti, Zr)5Si4, and Ti3Sn + Ti2AlC layers, respectively, were observed. Finally, the formation mechanism of the interfacial reaction products and element diffusion of SiCf/TiAl composites under different conditions were studied, the interfacial stratification occurred during thermal exposure because some TiC participated during the formation of Ti2AlC.

Key wordsSiCf/TiAl composites    vacuum suction casting    interfacial reaction product    element diffusion
收稿日期: 2021-02-17     
ZTFLH:  TG146.2  
基金资助:中国科学院金属研究所创新基金项目(2015-ZD03)
作者简介: 杨 锐, ryang@imr.ac.cn,主要从事钛及钛铝合金研究;贾 清, qjia@imr.ac.cn,主要从事钛铝合金铸造研究
沈莹莹,女,1989年生,博士生
图1  带有钛合金涂层的SiC纤维横截面示意图
图2  真空吸铸法制备的SiCf/TiAl复合材料横截面形貌的SEM像
图3  制备态SiCf/TiAl复合材料SEM像及纤维到基体端元素线扫描结果
图4  制备态SiCf/TiAl复合材料界面反应产物组织的TEM像及选区电子衍射(SAED)花样
图5  800℃热暴露不同时间后SiCf/TiAl复合材料界面反应层及周围组织形貌的SEM像
Thermal exposure time / hThickness of the interfacial reaction layer / μmThickness of the carbon layer / μm
251.3122.003
501.3761.982
1001.4721.912
1501.5731.897
2001.6201.869
表1  800℃热暴露不同时间后SiCf/TiAl复合材料界面反应层厚度和碳层厚度
图6  SiCf/TiAl复合材料800℃界面反应层长大动力学曲线
ElementPoint APoint B
Mass fractionAtomic fractionMass fractionAtomic fraction
C16.2042.663.6112.50
Al3.293.859.6414.86
Si2.783.130.470.69
Ti74.6649.2679.8469.30
Cr0.500.300.390.31
Zr1.210.421.710.78
Nb0.000.000.090.04
Mo0.180.060.370.16
Sn1.170.313.891.36
表2  图5e中点A、B处的EDS分析结果 (%)
图7  800℃热暴露200 h后SiCf/TiAl复合材料界面反应产物组织TEM像及SAED花样
图8  热暴露过程中界面反应产物生成和长大的示意图
1 Leyens C, Kocian F, Hausmann J, et al. Materials and design concepts for high performance compressor components [J]. Aerosp. Sci. Technol., 2003, 7: 201
doi: 10.1016/S1270-9638(02)00013-5
2 Wang Y M, Zhang G X, Zhang X, et al. Advances in SiC fiber reinforced titanium matrix composites [J]. Acta Metall. Sin., 2016, 52: 1153
2 王玉敏, 张国兴, 张 旭 等. 连续SiC纤维增强钛基复合材料研究进展 [J]. 金属学报, 2016, 52: 1153
doi: 10.11900/0412.1961.2016.00347
3 Ward-Close C M, Minor R, Doorbar P J. Intermetallic-matrix composites—A review [J]. Intermetallics, 1996, 4: 217
doi: 10.1016/0966-9795(95)00037-2
4 Beaumont P W R, Zweben C H. Comprehensive Composite Materials II [M]. 2nd Ed., Amsterdam: Elsevier, 2018: 482
5 Zhang Y G, Han Y F, Chen G L, et al. Structural Intermetallics [M]. Beijing: National Defense Industry Press, 2001: 686
5 张永刚, 韩雅芳, 陈国良 等. 金属间化合物结构材料 [M]. 北京: 国防工业出版社, 2001: 686
6 Dimiduk D M. Gamma titanium aluminide alloys—An assessment within the competition of aerospace structural materials [J]. Mater. Sci. Eng., 1999, A263: 281
7 Appel F, Brossmann U, Christoph U, et al. Recent progress in the development of gamma titanium aluminide alloys [J]. Adv. Eng. Mater., 2000, 2: 699
doi: 10.1002/1527-2648(200011)2:11<699::AID-ADEM699>3.0.CO;2-J
8 Yang R. Advances and challenges of TiAl base alloys [J]. Acta Metall. Sin., 2015, 51: 129
8 杨 锐. 钛铝金属间化合物的进展与挑战 [J]. 金属学报, 2015, 51: 129
9 Froes F H, Suryanarayana C, Eliezer D. Synthesis, properties and applications of titanium aluminides [J]. J. Mater. Sci., 1992, 27: 5113
doi: 10.1007/BF02403806
10 Bewlay B P, Nag S, Suzuki A, et al. TiAl alloys in commercial aircraft engines [J]. Mater. High Temp., 2016, 33: 549
doi: 10.1080/09603409.2016.1183068
11 Mah T, Hecht N L, McCullum D E, et al. Thermal stability of SiC fibres (Nicalon®) [J]. J. Mater. Sci., 1984, 19: 1191
doi: 10.1007/BF01120029
12 Dicarlo J A. Creep of chemically vapour deposited SiC fibres [J]. J. Mater. Sci., 1986, 21: 217
doi: 10.1007/BF01144723
13 Zhang X, Yang Q, Wang Y M, et al. Tensile property of SiCf/TC17 composite at room temperature [J]. Chin. J. Nonferrous Met., 2010, 20(spec.1) : s203
13 张 旭, 杨 青, 王玉敏 等. SiCf/TC17复合材料的室温拉伸性能 [J]. 中国有色金属学报, 2010, 20(专辑1) : s203
14 Ochiai S, Yagihashi M, Osamura K. Influence of interfacial reaction on tensile strength of SiC fiber embedded in a γ-titanium-aluminide alloy [J]. Intermetallics, 1994, 2: 1
doi: 10.1016/0966-9795(94)90045-0
15 Goo G K, Graves J A, Mecartney M L. Interfacial reaction of coated SiC fibers with gamma-TiAl [J]. Scr. Metall. Mater., 1992, 26: 1043
doi: 10.1016/0956-716X(92)90227-6
16 Djanarthany S, Viala J C, Bouix J. Development of SiC/TiAl composites: Processing and interfacial phenomena [J]. Mater. Sci. Eng., 2001, A300: 211
17 Zhang G X, Kang Q, Li G P, et al. Interfacial reaction of SiCf reinforced Ti-48Al-1.5Mn Matrix Composite [J]. Acta Metall. Sin., 2003, 39: 329
17 张国兴, 康 强, 李阁平 等. SiCf增强Ti-48Al-1.5Mn复合材料的界面反应 [J]. 金属学报, 2003, 39: 329
18 Zhang D, Sun Y B, Zhao Y Q, et al. Interfacial products in SiC fiber reinforced Ti-Al based intermetallic alloys [J]. Rare Met., 2011, 30: 524
doi: 10.1007/s12598-011-0338-x
19 Zhang W, Yang Y Q, Zhao G M, et al. Investigation of interfacial reaction in SiC fiber reinforced Ti-43Al-9V composites [J]. Intermetallics, 2013, 33: 54
doi: 10.1016/j.intermet.2012.09.025
20 Zhang W, Yang Y Q, Zhao G M, et al. Interfacial reaction studies of B4C-coated and C-coated SiC fiber reinforced Ti-43Al-9V composites [J]. Intermetallics, 2014, 50: 14
doi: 10.1016/j.intermet.2014.02.003
21 Zhang X, Wang Y M, Lei J F, et al. The interfacial thermal stability and element diffusion mechanism of SiCf/TC17 composite [J]. Acta Metall. Sin., 2012, 48: 1306
doi: 10.3724/SP.J.1037.2012.00347
21 张 旭, 王玉敏, 雷家峰 等. SiCf/TC17复合材料界面热稳定性及元素扩散机理 [J]. 金属学报, 2012, 48: 1306
22 Wang C, Zhang X, Wang Y M, et al. Mechanisms of interfacial reaction and matrix phase transition in SiCf/Ti65 composites [J]. Acta Metall. Sin., 2020, 56: 1275
22 王 超, 张 旭, 王玉敏 等. SiCf/Ti65复合材料界面反应与基体相变机理 [J]. 金属学报, 2020, 56: 1275
23 Zhu Y. Study on the interfacial reactions of SiC fiber reinforced Ti-matrix composites [D]. Xi'an: Northwestern Polytechnical University, 2003
23 朱 艳. SiC纤维增强Ti基复合材料界面反应研究 [D]. 西安: 西北工业大学, 2003
24 Xun Y W, Tan M J, Zhou J T. Processing and interface stability of SiC fiber reinforced Ti-15V-3Cr matrix composites [J]. J. Mater. Process. Technol., 2000, 102: 215
doi: 10.1016/S0924-0136(00)00473-8
25 Backhaus-Ricoult M. Physicochemical Processes at Metal-Creamic Interfaces [M]. Oxford: Pergamon Press, 1990: 79
26 Zhang X. Study on interface reaction, residual stress and mechanial properites of SiCf/TC17 composite [D]. Shenyang: University of Chinese Academy of Sciences (Institute of Metal Research, Chinese Academy of Sciences), 2012
26 张 旭. SiCf/TC17复合材料界面反应、残余应力及力学性能研究 [D]. 沈阳: 中国科学院大学(中国科学院金属研究所), 2012
27 Yang Y Q, Luo X, Huang B, et al. Characterizing interfacial reaction of SiC fiber-reinforced titanium-matrix composites [J]. Chin. J. Stereol. Image Anal., 2016, 21: 58
27 杨延清, 罗 贤, 黄 斌 等. SiC纤维增强Ti基复合材料的界面反应规律 [J]. 中国体视学与图像分析, 2016, 21: 58
28 Yang J M, Jeng S M. Interfacial reactions in titanium-matrix composites [J]. JOM, 1989, 41(11): 56
29 Wang X H, Zhou Y C. Solid-liquid reaction synthesis and simultaneous densification of polycrystalline Ti2AlC [J]. Z. Metallkd., 2002, 93: 66
doi: 10.3139/146.020066
30 Xie X. Preparation and characterization of textured Ti2AlC and Ti3AlC2 composites [D]. Shenyang: University of Science and Technology of China, 2020
30 谢 曦. 取向Ti2AlC和Ti3AlC2复合材料的制备和性能研究 [D]. 沈阳: 中国科学技术大学, 2020
[1] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[2] 刘日平, 马明臻, 张新宇. 块体非晶合金铸造成形的研究新进展[J]. 金属学报, 2021, 57(4): 515-528.
[3] 王超, 张旭, 王玉敏, 杨青, 杨丽娜, 张国兴, 吴颖, 孔旭, 杨锐. SiCf/Ti65复合材料界面反应与基体相变机理[J]. 金属学报, 2020, 56(9): 1275-1285.
[4] 吴铭方, 匡泓锦, 王凤江, 林红香, 胥国祥. Zr/Cu/Zr部分瞬间液相焊扩散连接Ti(C, N)-Al2O3陶瓷基复合材料*[J]. 金属学报, 2014, 50(5): 619-625.
[5] 张旭 王玉敏 雷家峰 杨锐. SiCf/TC17复合材料界面热稳定性及元素扩散机理[J]. 金属学报, 2012, 48(11): 1306-1314.