Please wait a minute...
金属学报  2014, Vol. 50 Issue (3): 373-378    DOI: 10.3724/SP.J.1037.2013.00314
  论文 本期目录 | 过刊浏览 |
海水温度和浓缩度对316L不锈钢点蚀性能的影响*
辛森森1,2) 李谋成1,2) 沈嘉年1,2)
1) 上海大学材料研究所, 上海200072
2) 上海大学微结构重点实验室,上海200444
EFFECT OF TEMPERATURE AND CONCENTRATION RATIO ON PITTING RESISTANCE OF 316L STAINLESS STEEL IN SEAWATER
XIN Sensen 1,2), LI Moucheng 1,2), SHEN Jianian 1,2)
1) Institute of Materials, Shanghai University, Shanghai 200072
2) Laboratory for Microstructure, Shanghai University, Shanghai 200444
全文: PDF(5138 KB)   HTML
摘要: 运用循环阳极极化曲线研究了不同温度和浓缩度的海水介质中316L不锈钢的点蚀行为. 结果表明, 在1~3倍浓缩度范围内, 316L不锈钢的点蚀电位和再钝化电位均随着温度的升高而线性降低, 但当浓缩度高于2倍、温度大于85 ℃时, 点蚀电位变化较小; 在25~95 ℃温度范围内, 点蚀电位和再钝化电位与海水浓缩度的对数呈线性关系. 浓缩度对316L不锈钢点蚀性能的影响比温度更小, 并根据点缺陷理论分析了二者对点蚀的作用机制.
关键词 不锈钢点蚀浓缩海水温度    
Abstract:Due to a serious shortage of natural fresh water in many areas all over the world, the seawater desalination has emerged as an effective compensation way to meet the consumption requirements. Due to the good corrosion resistance and low cost, stainless steels have been used extensively to construct the multi effect distillation (MED) plants, especially type 316L stainless steel for the evaporation chambers. However, with the application and development of low temperature MED, there is increasingly need of higher temperature distillation and higher brine concentration in the desalinators to reduce the drainage of hot brine and increase the water production ratio, which may cause more serious corrosion on the stainless steel components in the plants. Pitting corrosion of 316L stainless steel was studied in the concentrated environments of seawater with different temperatures (25, 50, 63, 72, 85 and 95 ℃) and concentration ratios (1, 1.5, 2, 2.5 and 3 times) by using cyclic anodic polarization measurement and SEM surface observation. The results show that both pitting potential and repassivation potential of 316L stainless steel decrease linearly with temperature in the concentration ratio range of 1 to 3 times for seawater, but the change of pitting potential is very slight when the solution temperature is higher than 85 ℃ in the case of concentration ratio larger than 2 times. Both pitting potential and repassivation potential reduce linearly with the logarithm of the concentration ratio of seawater in the range of 25 to 95 ℃. It is apparent that increasing temperature and concentration ratio of seawater will deteriorate the pitting resistance of 316L stainless steel noticeably. The influence of temperature and concentration ratio is analyzed on the basis of the point defect model. Nevertheless, the concentration ratio of seawater has a weaker influence on pitting resistance of 316L stainless steel in comparison with temperature as revealed by the pitting potential changes resulted from the concentration ratio around 1.5 times and solution temperature around 72 ℃. Therefore, compared with temperature, the corrosion resistance of 316L stainless steel for low temperature MED plants may be relatively tolerant of the adjustment or fluctuation of seawater concentration.
Key wordsstainless steel    pitting corrosion    concentrated seawater    temperature
收稿日期: 2013-06-07     
ZTFLH:  TG 172  
基金资助:*国家自然科学基金资助项目51134010
Corresponding author: LI Moucheng, professor, Tel: (021)56334167, E-mail: mouchengli@shu.edu.cn   
作者简介: 辛森森, 男, 1985年生, 博士生

引用本文:

辛森森, 李谋成, 沈嘉年. 海水温度和浓缩度对316L不锈钢点蚀性能的影响*[J]. 金属学报, 2014, 50(3): 373-378.
XIN Sensen, LI Moucheng, SHEN Jianian. EFFECT OF TEMPERATURE AND CONCENTRATION RATIO ON PITTING RESISTANCE OF 316L STAINLESS STEEL IN SEAWATER. Acta Metall Sin, 2014, 50(3): 373-378.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00314      或      https://www.ams.org.cn/CN/Y2014/V50/I3/373

[1] Wade N W. Desalination, 1993; 93: 343
[2] Olsson J. Desalination, 2005; 183: 217
[3] Khawaji A D, Kutubkhanah I K, Wie J M. Desalination, 2008; 221: 47
[4] Budhiraja P, Fares A A. Desalination, 2008; 220: 313
[5] Al-Shammiri M, Safar M. Desalination, 1999; 126: 45
[6] Hospadaruk V, Petrocelli J V. J Electrochem Soc, 1966; 113: 878
[7] Moayed M H, Laycock N J, Newman R C. Corros Sci, 2003; 45:1203
[8] Laycock N J, Newman R C. Corros Sci, 1988; 40: 887
[9] Hong T, Nagumo M. Corros Sci, 1997; 39: 288
[10] Moretti G, Quartarone G, Tassan A, Zingales A. Mater Corros, 1993; 44: 24
[11] Tsutsumi Y, Nishikata A, Tsuru T. Corros Sci, 2007; 49: 1394
[12] Cheng X Q, Li X G, Du C W. Acta Metall Sin, 2006; 42: 299
(程学群, 李晓刚, 杜翠薇. 金属学报, 2006; 42: 299)
[13] Liao J X, Jiang Y M, Wu W W, Zhong C, Li J. Acta Metall Sin, 2006; 42: 1187
(廖家兴, 蒋益明, 吴玮巍, 钟 澄, 李 劲. 金属学报, 2006; 42: 1187)
[14] Yashiro H, Tanno K, Koshiyama S, Akashi K. Corrosion, 1996; 52: 109
[15] Sikora J, Sikora E, Macdonald D D. Electrochim Acta, 2000; 45: 1875
[16] Wang J H, Su C C, Szklarska-Smialowska Z. Corrosion, 1988; 44: 732
[17] Stockert L, Hunkeler F, Bohni H. Corrosion, 1985; 41: 676
[18] Wei X, Dong J H, Tong J, Zheng Z, Ke W. Acta Metall Sin, 2012; 48: 502
(魏 欣, 董俊华, 佟 健, 郑 志, 柯 伟. 金属学报, 2012; 48: 502)
[19] Li M C, Zeng C L, Lin H C, Cao C N. Acta Metall Sin, 2002; 36: 1287
(李谋成, 曾潮流, 林海潮, 曹楚南. 金属学报, 2002; 36: 1287)
[20] Frankel G S, Stockert L, Hunkeler F, Bohni H. Corrosion, 1987; 43: 429
[21] Hunkeler F, Frankel G S, Bohni H. Corrosion, 1987; 43: 189
[22] Malik A U, Mayan Kutty P C, Siddiqi N A, Andijani I N, Ahmed S. Corros Sci, 1992; 33: 1809
[23] Park J O, Matsch S, Bohni H. J Electrochem Soc, 2002; 149: 34
[24] Leckie H P, Uhlig H H. J Electrochem Soc, 1966; 115: 1262
[25] Macdonald D D. J Electrochem Soc, 1992; 139: 3434
[26] Macdonald D D. Electochim Acta, 2011; 56: 1761
[1] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[2] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[3] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[4] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[5] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[6] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[7] 刘正东,陈正宗,何西扣,包汉生. 630~700 ℃超超临界燃煤电站耐热管及其制造技术进展[J]. 金属学报, 2020, 56(4): 539-548.
[8] 张乐,王威,M. Babar Shahzad,单以银,杨柯. 新型多层金属复合材料的制备与性能[J]. 金属学报, 2020, 56(3): 351-360.
[9] 王桂芹,王琴,车宏龙,李亚军,雷明凯. Si对铸造超高铬高碳双相钢组织及性能的影响[J]. 金属学报, 2020, 56(3): 278-290.
[10] 王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.
[11] 张清东,李硕,张勃洋,谢璐,李瑞. 金属轧制复合过程微观变形行为的分子动力学建模及研究[J]. 金属学报, 2019, 55(7): 919-927.
[12] 彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
[13] 刘后龙,马明玉,刘玲玲,魏亮亮,陈礼清. 热轧板退火工艺对19Cr2Mo1W铁素体不锈钢织构与成形性能的影响[J]. 金属学报, 2019, 55(5): 566-574.
[14] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[15] 林晓冬,彭群家,韩恩厚,柯伟. 退火对热老化308L不锈钢焊材显微结构的影响[J]. 金属学报, 2019, 55(5): 555-565.