Please wait a minute...
金属学报  2016, Vol. 52 Issue (6): 679-688    DOI: 10.11900/0412.1961.2015.00577
  论文 本期目录 | 过刊浏览 |
静水压力和预应力对新型Ni-Cr-Mo-V高强钢腐蚀行为的影响*
范林,丁康康,郭为民,张彭辉,许立坤()
中国船舶重工集团公司第七二五研究所海洋腐蚀与防护重点实验室, 青岛 266101
EFFECT OF HYDROSTATIC PRESSURE AND PRE-STRESS ON CORROSION BEHAVIOR OF A NEW TYPE Ni-Cr-Mo-V HIGH STRENGTH STEEL
Lin FAN,Kangkang DING,Weimin GUO,Penghui ZHANG,Likun XU()
State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266101, China
引用本文:

范林,丁康康,郭为民,张彭辉,许立坤. 静水压力和预应力对新型Ni-Cr-Mo-V高强钢腐蚀行为的影响*[J]. 金属学报, 2016, 52(6): 679-688.
Lin FAN, Kangkang DING, Weimin GUO, Penghui ZHANG, Likun XU. EFFECT OF HYDROSTATIC PRESSURE AND PRE-STRESS ON CORROSION BEHAVIOR OF A NEW TYPE Ni-Cr-Mo-V HIGH STRENGTH STEEL[J]. Acta Metall Sin, 2016, 52(6): 679-688.

全文: PDF(1527 KB)   HTML
摘要: 

通过腐蚀速率的测量和腐蚀形貌的SEM观察, 结合点蚀形态的统计分析和点蚀内部及周围应力分布的有限元(FE)分析, 研究了静水压力和预加载拉伸应力对新型Ni-Cr-Mo-V高强钢在模拟深海环境中的腐蚀行为的影响. 结果表明, 随静水压力和预应力的升高, Ni-Cr-Mo-V高强钢的腐蚀速率增大, 表现在点蚀的萌生、发展和合并过程. 静水压力促进了点蚀微孔的萌生和在高强钢表面的随机分布. 静水压力和预应力在点蚀的生长过程中表现出了交互作用, 这在高预应力水平下更加显著. 静水压力以促进点蚀沿平行于表面的生长为主, 预应力是使点蚀深度增大的要素. 点蚀易于沿垂直于预应力方向合并. 随着静水压力和预应力的升高, 点蚀径深比增大, Ni-Cr-Mo-V高强钢向均匀腐蚀转变.

关键词 高强钢静水压力预应力深海环境点蚀    
Abstract

The efforts on deep sea exploration and development have posed many challenges on the corrosion resistance and safety use of high strength steel in recent years. This has attracted a lot of attentions on the corrosion behavior of high strength steel in deep sea environment. Hydrostatic pressure has been identified as one of the most significant factors that affect pitting corrosion of materials or steel structures used in deep sea. However, pre-stress introduced by the actual service conditions is probably another critical factor of deep sea corrosion. The purpose of this work is to investigate the corrosion behavior of a new type Ni-Cr-Mo-V high strength steel under the combined stresses of hydrostatic pressure and preloaded tensile stress in simulated deep-sea environment. Corrosion rate measurement, SEM observation, statistical analysis of pitting geometry and finite element (FE) analysis were used in this work. The results indicated that corrosion rate of Ni-Cr-Mo-V high strength steel increased with the increase of hydrostatic pressure and pre-stress. The deterioration of corrosion resistance of the steel mainly reflected in pit initiation, pit growth and pit coalescence. Rather than pre-stress, hydrostatic pressure exhibited obvious effect on promoting pit initiation. Pits initiated in the form of corrosion pin-holes, which randomly distributed at the corroded surface. Both hydrostatic pressure and pre-stress facilitated pit growth, and there was an interaction between them, which was more remarkable at higher pre-stress. Hydrostatic pressure was mainly responsible for pit growth parallel to the steel surface, while pre-stress was essential to pit depth increase. Adjacent pits were inclined to coalesce in the direction perpendicular to pre-stress. With the increase of hydrostatic pressure and pre-stress, the aspect ratio of pits increased, which can lead to the formation of uniform corrosion.

Key wordshigh strength steel    hydrostatic pressure    pre-stress    deep-sea environment    pitting
收稿日期: 2015-11-11     
基金资助:* 国防科技工业技术基础资助项目JSJC2013207BH03
图1  模拟深海环境实验装置和拉伸预应力加载装置及试样示意图
图2  不同静水压力下Ni-Cr-Mo-V高强钢在5 ℃, 3.5%NaCl溶液中浸泡168 h的腐蚀速率与预应力的关系曲线
图3  Ni-Cr-Mo-V高强钢腐蚀速率的实测值和计算值与静水压力及预应力的关系
图4  Ni-Cr-Mo-V高强钢在不同静水压力和预应力下的腐蚀速率云图
图5  不同静水压力和预应力下Ni-Cr-Mo-V高强钢在5 ℃, 3.5%NaCl溶液中浸泡168 h后的点蚀形貌
图6  不同静水压力和预应力下点蚀的几何尺寸
图7  Ni-Cr-Mo-V高强钢在不同静水压力和预应力下所形成点蚀的几何尺寸的累积概率
图8  不同静水压力和预应力下点蚀内部及其周围的应力分布
图9  沿平行于预应力方向和垂直于预应力方向分布的相邻点蚀周围的应力分布
图10  不同静水压力和预应力下点蚀的径深比
[1] Traverso P, Canepa E.Ocean Eng, 2014; 87: 10
[2] Cao P, Zhou T T, Bai X Q, Yuan C Q.J Chin Soc Corros Prot, 2015; 35: 12
[2] (曹攀, 周婷婷, 白秀琴, 袁成清. 中国腐蚀与防护学报, 2015; 35: 12)
[3] Guo W M, Li W J, Chen G Z.Equip Environ Eng, 2006; 3(1): 10
[3] (郭为民, 李文军, 陈光章. 装备环境工程, 2006; 3(1): 10)
[4] Liu J, Li X B, Wang J.Acta Metall Sin, 2011; 47: 697
[4] (刘杰, 李相波, 王佳. 金属学报, 2011; 47: 697)
[5] Beccaria A M, Poggi G, Arfelli M, Mattogno G.Corros Sci, 1993; 34: 989
[6] Beccaria A M, Poggi G, Gingaud D, Castello P.British Corros J, 1994; 29: 65
[7] Yang Y G, Zhang T, Shao Y W, Meng G Z, Wang F H.Corros Sci, 2010; 52: 2697
[8] Yang Y G, Zhang T, Shao Y W, Meng G Z, Wang F H.Corros Sci, 2013; 73: 250
[9] Liu B, Zhang T, Shao Y W, Meng G Z, Liu J T, Wang F H.Int J Electrochem Sci, 2012; 7: 1864
[10] Paredes-Dugarte S Y, Hidalgo-Prada B.Procedia Mater Sci, 2015; 8: 82
[11] Cruz J L D L, Lindelauf R H A, Koene L, Gutiérrez M A.Electrochem Commun, 2007; 9: 325
[12] Guan L, Zhang B, Yong X P, Wang J Q, Han E H, Ke W.Corros Sci, 2015; 93: 80
[13] Cerit M, Genel K, Eksi S.Eng Fail Anal, 2009; 16: 2467
[14] Beccaria A M, Poggi G.British Corros J, 1985; 20: 183
[15] Zhou J L, Li X G, Chen X Q, Dong C F, Du C W, Lu L.Corros Sci Prot Technol, 2010; 22: 47
[15] (周建龙, 李晓刚, 程学群, 董超芳, 杜翠薇, 卢琳. 腐蚀科学与防护技术, 2010; 22: 47)
[16] Bhandari J, Khan F, Abbassi R, Garaniya V, Ojeda R.J Loss Preven Proc Ind, 2015; 37: 39
[17] Zheng S Q, Li C Y, Qi Y M, Chen L Q, Chen C F.Corros Sci, 2013; 67: 20
[18] Zheng S J, Wang Y J, Zhang B, Zhu Y L, Liu C, Hu P, Ma X L.Acta Mater, 2010; 58: 5070
[19] Beccaria A M, Poggi G, Castello G.British Corros J, 1995; 30: 283
[20] Sun H J, Liu L, Li Y.J Electrochem, 2013; 19: 418
[20] (孙海静, 刘莉, 李瑛. 电化学, 2013; 19: 418)
[21] Pidaparti R M, Patel R R.Mater Lett, 2008; 62: 4497
[22] Li J F, Chen W J, Zhao X S, Ren W D, Zheng Z Q.Trans Nonferrous Met Soc China, 2006; 16: 1171
[23] Hu J P, Liu Z Y, Hu S S, Li X G, Du C W.Surf Technol, 2015; 44(3): 9
[23] (胡建朋, 刘智勇, 胡山山, 李晓刚, 杜翠薇. 表面技术, 2015; 44(3): 9)
[24] Tian W M, Du N, Li S M, Chen S B, Wu Q Y.Corros Sci, 2014; 85: 372
[25] Cerit M.Corros Sci, 2013; 67: 225
[1] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[2] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[3] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[5] 金鑫焱, 储双杰, 彭俊, 胡广魁. 露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响[J]. 金属学报, 2023, 59(10): 1324-1334.
[6] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[7] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[8] 陆斌, 陈芙蓉, 智建国, 耿如明. 应用稀土氧化物冶金技术改善高强钢焊接性能[J]. 金属学报, 2020, 56(9): 1206-1216.
[9] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[10] 李金许,王伟,周耀,刘神光,付豪,王正,阚博. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56(4): 444-458.
[11] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[12] 王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.
[13] 马荣耀,王长罡,穆鑫,魏欣,赵林,董俊华,柯伟. 静水压力对超纯Fe腐蚀行为的影响[J]. 金属学报, 2019, 55(7): 859-874.
[14] 李恺强, 杨璐嘉, 徐云泽, 王晓娜, 黄一. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响[J]. 金属学报, 2019, 55(4): 457-468.
[15] 马荣耀, 赵林, 王长罡, 穆鑫, 魏欣, 董俊华, 柯伟. 静水压力对金属腐蚀热力学及动力学的影响[J]. 金属学报, 2019, 55(2): 281-290.