Please wait a minute...
金属学报  2015, Vol. 51 Issue (9): 1077-1084    DOI: 10.11900/0412.1961.2015.00062
  本期目录 | 过刊浏览 |
超细晶304L不锈钢在含Cl-溶液中点蚀行为的研究
朴楠1,2,陈吉1(),尹成江1,3,孙成4,张星航4,武占文5
2 清华大学核能与新能源技术研究院, 北京 100084
3 东北石油大学机械工程学院, 大庆 163318
4 Department of Mechanical Engineering, Texas A&M University, College station, TX 77843-3123, USA
5 中海油能源发展股份有限公司管道工程分公司, 天津 300452
INVESTIGATION ON PITTING CORROSION BEHAVIOR OF ULTRAFINE-GRAINED 304L STAINLESS STEEL IN Cl- CONTAINING SOLUTION
Nan PIAO1,2,Ji CHEN1(),Chengjiang YIN1,3,Cheng SUN4,Xinghang ZHANG4,Zhanwen WU5
1 Center of Corrosion and Protection Technology in Petro-Chemical Industry, Department of Mechanical Engineering, Liaoning Shihua University, Fushun 113001
2 Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084
3 Department of Mechanical Engineering, Northeast Petroleum University, Daqing 163318
4 Department of Mechanical Engineering, Texas A&M University, College station, TX 77843-3123, USA
5 CNOOC Energy Technology and Services-Pipe Engineering Co., Tianjin 300452
全文: PDF(1656 KB)   HTML
摘要: 

采用动电位极化、循环极化、电化学阻抗谱、Mott-Schottky曲线结合表面形貌观察, 研究了利用等通道转角挤压方法制备的晶粒尺寸为(130±30) nm的超细晶304L不锈钢在含Cl-溶液(0.05 mol/L H2SO4 + 0.05 mol/L NaCl)中的点蚀行为. 研究表明, 超细晶材料比粗晶材料具有更高的腐蚀电流密度和钝化电流密度, 更低的腐蚀电位、破钝电位和保护电位, 且钝化区更窄. 严重塑性变形引起304L不锈钢材料晶粒显著细化, 一方面增加了表面钝化膜的施主密度和扩散系数, 降低了钝化膜的致密性, 使Cl-在材料表面的吸附能力增强; 另一方面增加了晶界含量, 使Cl-沿晶界向内扩散能力增强, 促进了点蚀形核和长大.

关键词 304L不锈钢等通道转角挤压超细晶钝化膜点蚀    
Abstract

The electrochemical behavior and pitting corrosion in a Cl- containing solution (0.05 mol/L H2SO4+0.05 mol/L NaCl) of the ultrafine-grained 304L stainless steel (304L SS) with average grain size of (130±30) nm prepared by equal channel angular pressing (ECAP) technique were examined using potentiodynamic polarization curves, cycle polarization curves, electrochemical impedance spectroscopy (EIS), Mott-Schottky (M-S) curve measurements together with SEM observation of surface morphology. As compared to the coarse-grained counterpart, the ultrafine-grained sample exhibited a higher corrosion current density icorr of 81.74 Acm2 and a lower corrosion potential Ecorr (vs SCE) of -466 mV, and having a higher passivation current density ip of 32.38 mAcm2 and a narrower passive region (-315~450 mV) together with a breakdown potential Eb decrease of 100 mV and a protection potential Ebp decrease of 190 mV. On one hand, the grain refinement induced by severe plastic deformation deteriorates the compactness of the passive films and is helpful for the Cl- absorption, resulting in a 1.6 times increase of the carrier density and one order of magnitude increase of the diffusion coefficient in the passive films. On the other hand, the significant increase of grain boundaries provides more possibility for Cl- diffusion along grain boundaries, and thus promotes the pitting nucleation and growth.

Key words304L stainless steel    equal channel angular pressing (ECAP)    ultrafine grain    passive film    pitting corrosion
    
基金资助:*辽宁省自然科学基金资助项目201202127

引用本文:

朴楠,陈吉,尹成江,孙成,张星航,武占文. 超细晶304L不锈钢在含Cl-溶液中点蚀行为的研究[J]. 金属学报, 2015, 51(9): 1077-1084.
Nan PIAO, Ji CHEN, Chengjiang YIN, Cheng SUN, Xinghang ZHANG, Zhanwen WU. INVESTIGATION ON PITTING CORROSION BEHAVIOR OF ULTRAFINE-GRAINED 304L STAINLESS STEEL IN Cl- CONTAINING SOLUTION. Acta Metall Sin, 2015, 51(9): 1077-1084.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2015.00062      或      https://www.ams.org.cn/CN/Y2015/V51/I9/1077

图1  UFG-304L SS和CG-304L SS在0.05 mol/L H2SO4 + 0.05 mol/L NaCl溶液中的动电位极化曲线和循环极化曲线
Sample Ecorr / mV icorr / (mAcm-2) Ep / mV ip / (mAcm-2) Eb / mV Ebp / mV
UFG-304L -466 81.74 -315 32.38 552 198
CG-304L -401 19.45 -305 20.12 655 385
表 1  UFG-304L SS和CG-304L SS在0.05 mol/L H2SO4 + 0.05 mol/L NaCl溶液中的动电位极化曲线和循环极化曲线的拟合结果
图2  UFG-304L SS和CG-304L SS在0.05 mol/L H2SO4 + 0.05 mol/L NaCl溶液中循环极化后表面腐蚀形貌的SEM像
图3  UFG-304L SS和CG-304L SS在0.05 mol/L H2SO4 + 0.05 mol/L NaCl溶液中不同Ef形成钝化膜的M-S曲线
图4  UFG-304L SS和CG-304L SS在0.05 mol/L H2SO4 + 0.05 mol/L NaCl溶液中成膜30 min形成稳态钝化膜的Nd与Ef的关系
Sample 0.1 V 0.2 V 0.3 V 0.4 V
UFG-304L 7.52 6.04 5.32 4.55
CG-304L 6.57 5.26 4.59 4.11
表2  UFG-304L SS和CG-304L SS在0.05 mol/L H2SO4 +0.05 mol/L NaCl溶液中不同Ef形成钝化膜的施主密度(Nd)
图5  UFG-304L SS和CG-304L SS在0.05 mol/L H2SO4 + 0.05 mol/L NaCl溶液中成膜30 min形成的Lss与Ef的关系
图6  UFG-304L SS和CG-304L SS在0.05 mol/L H2SO4 + 0.05 mol/L NaCl溶液中不同Ef下形成钝化膜的Nyquist曲线
图7  UFG-304L SS和CG-304L SS在0.05 mol/L H2SO4 +0.05 mol/L NaCl溶液中点蚀示意图
Sample Ef / V Rs / (Ωcm-2) Qf/ (10-4 Fcm-2) n Rf / (104 Ωcm-2)
UFG-304L 0.1 9.58 1.96 0.80 2.19
0.2 8.56 2.06 0.82 2.99
0.3 7.54 2.31 0.86 3.49
0.4 10.78 1.99 0.90 4.03
CG-304L 0.1 11.35 1.05 0.87 3.88
0.2 10.34 1.26 0.87 4.06
0.3 9.86 1.57 0.90 4.52
0.4 10.84 1.70 0.92 5.03
表3  不同Ef下UFG-304L SS和CG-304L SS在0.05 mol/L H2SO4 + 0.05 mol/L NaCl溶液中形成表面钝化膜的Nyquist 曲线的拟合结果
图7  UFG-304L SS和CG-304L SS在0.05 mol/L H2SO4+0.05 mol/L NaCl溶液中点蚀示意图
[1] Valiev R Z, Islangaliev P K, Alexandrov I V. Prog Mater Sci, 2000; 45: 103
[2] Gleiter H. Acta Mater, 2000; 48: 1
[3] Chen J, Lu L, Lu K. Scr Mater, 2006; 54: 1913
[4] Lu K, Zhou F. Acta Metall Sin, 1997; 33: 99 (卢 柯, 周 飞. 金属学报, 1997; 33: 99)
[5] Huang C X, Gao Y L, Yang G, Wu S D, Li G Y, Li S X. J Mater Res, 2006; 21: 1687
[6] Wang Y, Chen M, Zhou F, Ma E. Nature, 2002; 419: 912
[7] Valiev R. Nat Mater, 2004; 3: 511
[8] Valiev R Z, Langdon T G. Prog Mater Sci, 2006; 51: 881
[9] Liu L, Li Y, Wang F H. J Mater Sci Technol, 2009; 54: 1339
[10] Kabi S, Raeissi K, Saatchi A. J Appl Electrochem, 2009; 39: 1279
[11] Yu B, Woo P, Erb U. Scr Mater, 2007; 56: 353
[12] Afshari V, Dehghanian C. Corros Sci, 2009; 51: 1844
[13] Li X L, Li Y, Wang F H. J Chin Soc Corros Prot, 2002; 22: 231 (李雪莉, 李 瑛, 王福会. 中国腐蚀与防护学报, 2002; 22: 321)
[14] Li N, Li Y, Wang S G, Wang F H. Electrochim Acta, 2006; 52: 760
[15] Han X, Chen J, Sun C, Wu Z W, Wu X C, Zhang X H. Acta Metall Sin, 2013; 49: 265 (韩 啸, 陈 吉, 孙 成, 武占文, 吴新春, 张星航. 金属学报, 2013; 49: 265)
[16] Meng G Z, Li Y, Wang F H. Electrochim Acta, 2006; 51: 4277
[17] Kiyotaka N, Zenji H, Minoru N, Terence G L. Mater Sci Eng, 2000; A280: 82
[18] Ding J, Lin H C, Cao C N. Corros Sci, 2002; 14: 67
[19] Yang R C, Bi H J, Niu S R, Jin S T, Shen P. J Lanzhou Univ Technol, 2010; 36: 5 (杨瑞成, 毕海娟, 牛绍蕊, 靳塞特, 申 鹏. 兰州理工大学学报, 2010; 36: 5)
[20] Dewald J F. J Phys Chem Solids, 1960; 14: 155
[21] Buchler M, Schmuki P, Buhui H. Electrochim Acta, 1997; 43: 635
[22] Hakiki N E, Belo M D C. J Electrochem Soc, 1996; 143: 3088
[23] Gercasi C A, Folquer M E, Vallejo A E. Electrochim Acta, 2005; 50: 1113
[24] Macdonald D D. J Electrochem Soc, 1992; 139: 3434
[25] MacDonald D D, Urquidi-MacDonald M. J Electrochem Soc, 1990; 137: 2395
[26] Chao C Y, Lin L F, MacDonald D D. J Electrochem Soc, 1981;128: 1187
[27] Sikora E, Sikora J, MacDonald D D. Electrochim Acta, 1996; 41: 783
[28] Guo H X, Lu B T, Luo J L. Electrochim Acta, 2006; 52: 1118
[29] Glass G K, Hassanein A M, Buenfeld N R. Corrosion, 1998; 54: 887
[30] Hamadou L, Kadri A, Benbrahim N. Appl Surf Sci, 2005; 252: 1510
[31] Li D G, Feng Y R, Bai Z Q, Zhu J W, Zheng M S. Acta Chim Sin, 2008; 66: 1151 (李党国, 冯耀荣, 白真权, 朱杰武, 郑茂盛. 化学学报, 2008; 66: 1151)
[1] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[2] 王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.
[3] 李恺强, 杨璐嘉, 徐云泽, 王晓娜, 黄一. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响[J]. 金属学报, 2019, 55(4): 457-468.
[4] 冯浩,李花兵,路鹏冲,杨纯田,姜周华,武晓雷. 铜绿假单胞菌对CrCoNi中熵合金微生物腐蚀行为的影响[J]. 金属学报, 2019, 55(11): 1457-1468.
[5] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[6] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[7] 徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究[J]. 金属学报, 2018, 54(3): 443-456.
[8] 李敏, 刘静, 姜庆伟. 退火温度对ARB-Cu室温拉伸断裂行为的影响[J]. 金属学报, 2017, 53(8): 1001-1010.
[9] 郭廷彪, 李琦, 王晨, 张锋, 贾智. 单晶Cu等通道转角挤压A路径形变特征及力学性能[J]. 金属学报, 2017, 53(8): 991-1000.
[10] 马江南,王瑞珍,杨才福,查小琴,张利娟. 中厚板表层超细晶对止裂性能的影响[J]. 金属学报, 2017, 53(5): 549-558.
[11] 王垚,李春福,林元华. Cr对Fe-Cr合金耐蚀性能影响的电子理论研究[J]. 金属学报, 2017, 53(5): 622-630.
[12] 夏大海, 宋诗哲, 王俭秋, 骆静利. 690和800合金在高温高压水中硫致腐蚀失效研究进展[J]. 金属学报, 2017, 53(12): 1541-1554.
[13] 于振涛, 余森, 程军, 麻西群. 新型医用钛合金材料的研发和应用现状[J]. 金属学报, 2017, 53(10): 1238-1264.
[14] 潘瑜, 张殿涛, 谭雨宁, 李珍, 郑玉峰, 李莉. 等通道挤压制备医用超细晶Mg-3Sn-0.5Mn合金及其力学性能[J]. 金属学报, 2017, 53(10): 1357-1363.
[15] 范林,丁康康,郭为民,张彭辉,许立坤. 静水压力和预应力对新型Ni-Cr-Mo-V高强钢腐蚀行为的影响*[J]. 金属学报, 2016, 52(6): 679-688.