Please wait a minute...
金属学报  2014, Vol. 50 Issue (2): 212-218    DOI: 10.3724/SP.J.1037.2013.00617
  本期目录 | 过刊浏览 |
钝性纳米金属材料的电化学腐蚀行为研究:钝化膜生长和局部点蚀行为*
刘莉(), 李瑛, 王福会
中国科学院金属研究所金属腐蚀与防护国家重点实验室, 沈阳 110016
ELECTROCHEMICAL CORROSION BEHAVIOR OF NANOCRYSTALLIZED MATERIALS: GROWTH OF PASSIVE FILM AND LOCAL PITTING CORROSION
LIU Li(), LI Ying, WANG Fuhui
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

刘莉, 李瑛, 王福会. 钝性纳米金属材料的电化学腐蚀行为研究:钝化膜生长和局部点蚀行为*[J]. 金属学报, 2014, 50(2): 212-218.
Li LIU, Ying LI, Fuhui WANG. ELECTROCHEMICAL CORROSION BEHAVIOR OF NANOCRYSTALLIZED MATERIALS: GROWTH OF PASSIVE FILM AND LOCAL PITTING CORROSION[J]. Acta Metall Sin, 2014, 50(2): 212-218.

全文: PDF(702 KB)   HTML
摘要: 

与同成分的传统粗晶材料相比, 纳米晶材料的腐蚀电化学行为发生显著改变. 纳米化会影响材料表面形成钝化膜的各种性能, 但关于纳米化如何影响决定其腐蚀行为的钝化膜生长机制以及点蚀行为目前尚不明确. 本文综述了近期针对纳米晶材料在含Cl-的常温水溶液中的钝化膜生长及点蚀行为2个动态历程的研究结果, 发现纳米化通过促进钝化膜的形核过程并提高钝化膜的生长速度, 从而改善了钝化膜的致密性. 纳米化改变了点蚀的萌生位置, 抑制了稳态点蚀的形成和生长过程, 从而提高材料抗局部腐蚀的能力.

关键词 纳米晶金属材料钝化点蚀原位AFM观测电化学腐蚀    
Abstract

Compared with the traditional coarse-grained materials, the electrochemical corrosion behavior of nanocrystalline materials has changed obviously. Nanocrystallization influences the properties of passive film on passive materials. In this paper, the current understanding of the growth of passive film and local pitting corrosion on nanocrystalline materials by dynamic research techniques were reviewed. The results indicate that nanocrystallization changed the nucleation mechanism of the passive film from progressive to instantaneous, and which promotes the growth rate of the passive film, both of which promote the compact properties of the passive film. The effects of nanocrystallization on local pitting corrosion behavior are concluded: (1) more frequent occurrence of metastable pits, but with lower probability of transition to stable pits, which is attributable to differences in morphologies of sulfur and manganese as well as outstanding repassivation ability of nanocrystalline thin film; (2) nanocrystallization decreases stable pit generation rate and its propensity to form larger pit cavities, and modifies the morphology of stable pit cavity.

Key wordsnanocrystalline material    passivation    pitting    in-situ AFM observation    electrochemical corrosion
收稿日期: 2013-09-27     
ZTFLH:  TG172.5  
基金资助:* 国家自然科学基金资助项目50801063和51271187
作者简介: null

刘 莉, 女, 1979年生, 研究员, 博士

[1] Intrui R B, Szklarska-Smialowska Z. Corrosion, 1992; 48: 398
[2] Li Y, Wang F H, Liu G. Corrosion, 2004; 60: 891
[3] Mariano N A, Souza C A C, Oliviera M F. Mater Sci Forum, 2000; 343: 861
[4] Zeiger W, Schneider M, Scharnweber D. Nanostruct Mater, 1995; 6: 1013
[5] Youssef K M S, Koch C C, Fedkiw P S. Corros Sci, 2004; 46: 51
[6] Wang L P, Zhang J Y, Gao Y, Xue Q J, Hu L T, Xu T. Scr Mater, 2006; 55: 657
[7] Wang X Y, Li D Y. Electrochim Acta, 2002; 47: 3939
[8] Liu L, Li Y, Wang F H. Electrochim Acta, 2007; 52: 2392
[9] Liu L, Li Y, Wang F H. Electrochim Acta, 2007; 52: 7193
[10] Zhang B, Li Y, Wang F H. Corros Sci, 2007; 49: 2071
[11] Liu L, Li Y, Wang F H. Electrochim Acta, 2008; 54: 768
[12] Meng G Z, Li Y, Wang F H. Electrochim Acta, 2006; 51: 4277
[13] Ye W, Li Y, Wang F H. Electrochim Acta, 2006; 51: 4426
[14] Philipp R, Retter U.Electrochim Acta, 1995; 40: 1581
[15] Philipp R, Retter U. Thin Solid Films, 1991; 207: 42
[16] Vvedenskii A V, Grushevskaya S N. Corros Sci, 2003; 45: 2391
[17] Hills G J, Peter L M, Scharifker B R. J Electroanal Chem, 1981; 124: 247
[18] Pan C, Liu L, Li Y, Wang S G, Wang F H. Electrochim Acta, 2011; 56: 7740
[19] Ji H B, Lin W M.J Chem Ind Eng, 1997; 48: 453
[20] Pan C.PhD Dissertation. Institute of Metal Research, Chinese Academy of Science, Shenyang, 2012
[20] (潘 晨. 中国科学院金属研究所博士学位论文, 沈阳, 2012)
[21] Song S Z, Tang Z L. Acta Metall Sin, 1995; 31: B61
[21] (宋诗哲, 唐子龙. 金属学报 1995; 31: B61)
[22] Liu L, Li Y, Wang F H. J Mater Sci Technol, 2010; 26: 1
[23] Liu L, Li Y, Wang F H. Electrochim Acta, 2008; 53: 2453
[24] Pan C, Liu L, Li Y, Wang F H. Corros Sci, 2013; 73: 32
[25] Zheng S J, Wang Y J, Zhang B, Zhu Y L, Liu C, Hu P, Ma X L. Acta Mater, 2010; 58: 5070
[26] Liu L, Li Y, Wang F H. Electrochim Acta, 2010; 55: 2430
[27] Burstein G, Vines S. J Electrochem Soc, 2001; 148: B504
[28] Pan C, Liu L, Li Y, Wang F H. Thin Solid Film, 2011; 519: 4781
[29] Shibata T. Corros Sci, 1996; 52: 813
[30] Gumbel E J. Statistics of Extremes. New York: Columbia University Press, 1957: 87
[31] Sun D, Jiang Y, Tang Y, Xiang Q, Zhong C, Liao J, Li J. Electrochim Acta, 2009; 54: 1558
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[3] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[4] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[5] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[6] 汤雁冰, 沈新旺, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 邹家生, 许静. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为[J]. 金属学报, 2022, 58(3): 324-333.
[7] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.
[8] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[9] 王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.
[10] 李恺强, 杨璐嘉, 徐云泽, 王晓娜, 黄一. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响[J]. 金属学报, 2019, 55(4): 457-468.
[11] 冯浩,李花兵,路鹏冲,杨纯田,姜周华,武晓雷. 铜绿假单胞菌对CrCoNi中熵合金微生物腐蚀行为的影响[J]. 金属学报, 2019, 55(11): 1457-1468.
[12] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[13] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[14] 徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究[J]. 金属学报, 2018, 54(3): 443-456.
[15] 刘峰, 黄林科, 陈豫增. 纳米晶金属材料中相变与晶粒长大的共生现象[J]. 金属学报, 2018, 54(11): 1525-1536.