Please wait a minute...
金属学报  2015, Vol. 51 Issue (5): 513-518    DOI: 10.11900/0412.1961.2014.00556
  论文 本期目录 | 过刊浏览 |
马氏体不锈钢上梯度纳米结构表层的形成及其对电化学腐蚀行为的影响*
黄海威1,王镇波1(),刘莉2,雍兴平3,卢柯1,4
1 中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
2 中国科学院金属研究所, 沈阳 110016
3 沈阳鼓风机集团股份有限公司, 沈阳 110869
4 南京理工大学格莱特纳米科技研究所, 南京 210094
FORMATION OF A GRADIENT NANOSTRUCTURED SURFACE LAYER ON A MARTENSITIC STAINLESS STEEL AND ITS EFFECTS ON THE ELECTRO- CHEMICAL CORROSION BEHAVIOR
Haiwei HUANG1,Zhenbo WANG1(),Li LIU2,Xingping YONG3,Ke LU1,4
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
3 Shenyang Blower Works Group Co. Ltd., Shenyang 110869
4 Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094
引用本文:

黄海威, 王镇波, 刘莉, 雍兴平, 卢柯. 马氏体不锈钢上梯度纳米结构表层的形成及其对电化学腐蚀行为的影响*[J]. 金属学报, 2015, 51(5): 513-518.
Haiwei HUANG, Zhenbo WANG, Li LIU, Xingping YONG, Ke LU. FORMATION OF A GRADIENT NANOSTRUCTURED SURFACE LAYER ON A MARTENSITIC STAINLESS STEEL AND ITS EFFECTS ON THE ELECTRO- CHEMICAL CORROSION BEHAVIOR[J]. Acta Metall Sin, 2015, 51(5): 513-518.

全文: PDF(3294 KB)   HTML
摘要: 

采用表面机械滚压处理(SMRT)在Z5CND16-4马氏体不锈钢上制备出梯度纳米结构(GNS)表层. 利用SEM和TEM研究了GNS表层的组织特点. 结果表明: 晶粒尺寸随深度的增大由最表层的25 nm逐渐增加到基体的原始尺寸, 整个组织细化层的厚度约为150 mm. 对比研究了SMRT样品与原始样品在3.5%NaCl (质量分数)水溶液中的电化学腐蚀行为, 发现点蚀击破电位由原始样品的0.179 V提高到0.313 V, 自腐蚀电位也有所提高. 分析表明, GNS表层中晶粒尺寸纳米化、组织均匀性提高、残余压应力的产生以及表面光洁度的提高有利于其耐点蚀能力的提高.

关键词 纳米材料梯度纳米结构表面机械滚压处理马氏体不锈钢点蚀    
Abstract

A gradient nanostructured (GNS) surface layer was fabricated on a Z5CND16-4 martensitic stainless steel by means of surface mechanical rolling treatment (SMRT). The microstructure in the GNS surface layer was characterized by using SEM and TEM. The results showed that the mean grain size increases with depth, from about 25 nm at the topmost surface layer to the initial value in the matrix. The total thickness of the grain-refined layer is about 150 mm. The electrochemical corrosion property of the SMRT sample was compared with that of the as-received sample in a 3.5%NaCl aqueous solution. It is shown that the pitting corrosion potential increases from about 0.179 V in the as-received sample to about 0.313 V in the SMRT sample, and the self-corrosion potential also increases evidently. The formation of nanostructures, the increased structural homogeneity, and the introduction of compressive residual stresses in the GNS surface layer, as well as the decreased surface roughness, were discussed to promote the pitting corrosion resistance of the SMRT sample.

Key wordsnanostructured material    gradient nanostructure    surface mechanical rolling treatment    martensitic stainless steel    pitting corrosion
收稿日期: 2014-10-10     
基金资助:* 国家重点基础研究发展计划资助项目2012CB932201
作者简介: 黄海威, 男, 1985年生, 博士生
图1  Z5CND16-4不锈钢原始样品的典型SEM像
图2  经过表面机械滚压处理(SMRT)的Z5CND16-4不锈钢的横截面SEM像
图3  SMRT样品表层中不同深度处的TEM像
图4  SMRT样品最表层晶粒尺寸统计结果
图5  SMRT样品表层中残余应力随深度变化情况
图6  SMRT样品和原始样品在3.5%NaCl水溶液中的动电位扫描极化曲线
图7  原始样品和SMRT样品表面点蚀坑的SEM像
[1] Lu K, Lu J. J Mater Sci Technol, 1999; 15: 193
[2] Lu K, Lu J. Mater Sci Eng, 2004; A375: 38
[3] Fang T H, Li W L, Tao N R, Lu K. Science, 2011; 331: 1587
[4] Wang Z B, Tao N R, Li S, Wang W, Liu G, Lu J, Lu K. Mater Sci Eng, 2003; A352: 144
[5] Villegas J C, Shaw L L. Acta Mater, 2009; 57: 5782
[6] Huang H W, Wang Z B, Yong X P, Lu K. Mater Sci Technol, 2013; 29: 1200
[7] Pacquentin W, Caron N, Oltra R. Appl Surf Sci, 2014; 288: 34
[8] Li Y, Wang F, Liu G. Corrosion, 2004; 60: 891
[9] Hao Y W, Deng B, Zhong C, Jiang Y M, Li J. J Iron Steel Res Int, 2009; 16: 68
[10] Balusamy T, Sankara Narayanan T S N, Ravichandran K, Park I S, Lee M H. Corros Sci, 2013; 74: 332
[11] Chen T, John H, Xu J, Lu Q, Hawk J, Liu X. Corros Sci, 2013; 77: 230
[12] Wang T, Yu J, Dong B. Surf Coat Technol, 2006; 200: 4777
[13] Huang R, Han Y. Mater Sci Eng, 2013; C33: 2353
[14] Jelliti S, Richard C, Retraint D, Roland T, Chemkhi M, Demangel C. Surf Coat Technol, 2013; 224: 82
[15] Raja K S, Namjoshi S A, Misra M. Mater Lett, 2005; 59: 570
[16] Wang X Y, Li D Y. Electrochim Acta, 2002; 47: 3939
[17] Huang H W, Wang Z B, Lu J, Lu K. Acta Mater, 2015; 87: 150
[18] Zhou L, Liu G, Ma X L, Lu K. Acta Mater, 2008; 56: 78
[19] Wang L M, Wang Z B, Lu K. Acta Mater, 2011; 59: 3710
[20] Arifvianto B, Suyitno, Mahardika M. Appl Surf Sci, 2012; 258: 4538
[21] Bagherifard S, Guagliano M. Eng Fract Mech, 2012; 81: 56
[22] Meng G Z, Li Y, Wang F H. Electrochim Acta, 2006; 51: 4277
[23] Liu L, Li Y, Wang F H. Acta Metall Sin, 2014; 50: 212 (刘 莉, 李 瑛, 王福会. 金属学报, 2014; 50: 212)
[24] Moon J, Ha H Y, Lee T H, Lee C. Mater Chem Phys, 2013; 142: 556
[25] Hara T, Asahi H. ISIJ Int, 2000; 40: 1134
[26] Peyre P, Scherpereel X, Berthe L, Carboni C, Fabbro R, Béranger G, Lemaitre C. Mater Sci Eng, 2000; A280: 294
[27] Sun Y, Bailey R. Surf Coat Technol, 2014; 253: 284
[28] Li W, Li D Y. Acta Mater, 2006; 54: 445
[1] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[2] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[3] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[4] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[5] 王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.
[6] 李恺强, 杨璐嘉, 徐云泽, 王晓娜, 黄一. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响[J]. 金属学报, 2019, 55(4): 457-468.
[7] 冯浩,李花兵,路鹏冲,杨纯田,姜周华,武晓雷. 铜绿假单胞菌对CrCoNi中熵合金微生物腐蚀行为的影响[J]. 金属学报, 2019, 55(11): 1457-1468.
[8] 赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展[J]. 金属学报, 2019, 55(1): 1-15.
[9] 王晓军, 向烨阳, 胡小石, 吴昆. 碳纳米材料增强镁基复合材料研究进展[J]. 金属学报, 2019, 55(1): 73-86.
[10] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[11] 马也飞, 宋竹满, 张思倩, 陈立佳, 张广平. 小尺度CA6NM马氏体不锈钢样品疲劳性能评价研究[J]. 金属学报, 2018, 54(10): 1359-1367.
[12] 范林,丁康康,郭为民,张彭辉,许立坤. 静水压力和预应力对新型Ni-Cr-Mo-V高强钢腐蚀行为的影响*[J]. 金属学报, 2016, 52(6): 679-688.
[13] 何岳,向嵩,石维,刘建敏,梁宇,陈朝轶. 冷拔珠光体钢的组织演变对其点蚀行为的影响*[J]. 金属学报, 2016, 52(12): 1536-1544.
[14] 杨建海,张玉祥,葛利玲,陈家照,张鑫. 2A14铝合金混合表面纳米化对电化学腐蚀行为的影响*[J]. 金属学报, 2016, 52(11): 1413-1422.
[15] 徐滨士,方金祥,董世运,刘晓亭,闫世兴,宋超群,夏丹. FV520B不锈钢激光熔覆热影响区组织演变及其对力学性能的影响*[J]. 金属学报, 2016, 52(1): 1-9.