Please wait a minute...
金属学报  2016, Vol. 52 Issue (11): 1413-1422    DOI: 10.11900/0412.1961.2016.00102
  本期目录 | 过刊浏览 |
2A14铝合金混合表面纳米化对电化学腐蚀行为的影响*
杨建海1,张玉祥1,葛利玲2(),陈家照1,张鑫1
1 火箭军工程大学, 西安 710025
2 西安理工大学材料科学与工程学院, 西安 710048
EFFECT OF HYBRID SURFACE NANOCRYSTALLI-ZATION ON THE ELECTROCHEMICAL CORROSION BEHAVIOR IN 2A14 ALUMINUM ALLOY
Jianhai YANG1,Yuxiang ZHANG1,Liling GE2(),Jiazhao CHEN1,Xin ZHANG1
1 Rocket Force University of Engineering, Xi'an 710025, China
2 School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China;
引用本文:

杨建海,张玉祥,葛利玲,陈家照,张鑫. 2A14铝合金混合表面纳米化对电化学腐蚀行为的影响*[J]. 金属学报, 2016, 52(11): 1413-1422.
Jianhai YANG, Yuxiang ZHANG, Liling GE, Jiazhao CHEN, Xin ZHANG. EFFECT OF HYBRID SURFACE NANOCRYSTALLI-ZATION ON THE ELECTROCHEMICAL CORROSION BEHAVIOR IN 2A14 ALUMINUM ALLOY[J]. Acta Metall Sin, 2016, 52(11): 1413-1422.

全文: PDF(1752 KB)   HTML
  
摘要: 

采用超音速微粒轰击(SFPB)和表面机械滚压处理(SMRT)相结合的混合表面纳米化方法, 在2A14铝合金上制备出梯度纳米结构(GNS)表层, 对比研究了原始样品和常温空气及低温液氮环境下混合表面纳米化样品在3.5%NaCl水溶液中的电化学腐蚀行为. 结果表明: 经混合表面纳米化处理后, 2A14铝合金晶粒尺寸由最表层约30 nm逐渐增大到基体的原始尺寸, 塑性变形层厚度约130 μm, 表面粗糙度Ra约为0.6 μm, 表面微小裂纹消失. 与原始样品相比, 经过SFPB处理的样品耐点蚀能力没有得到提高, 混合表面纳米化样品的耐点蚀能力得到提高, 其中常温空气环境下样品的自腐蚀电位和点蚀击破电位分别由-1.01228和-0.29666 V升高到-0.67445和0.026760 V, 耐点蚀能力最强. 分析表明, 表层晶粒尺寸纳米化、晶界显著增多、残余压应力以及表面粗糙度的改善有利于提高样品的耐点蚀性能.

关键词 铝合金,混合表面纳米化,梯度纳米结构,耐点蚀性能    
Abstract

In recent years, the surface nanocrystallization (SNC) technology has received extensive attentions in the field of metal material. The shot peening and surface mechanical rolling processing technology can form the gradient nanostructured (GNS) layer on the surface of metal. The material surface roughness is large generally. Therefore, the problem how to form the thick, smooth, flawless GNS layer is need to solve urgently. By means of the hybrid surface nanocrystallization (HSNC) method of both supersonic fine particles bombarding (SFPB) and surface mechanical rolling treatment (SMRT), a gradient nanostructured surface layer was formed on 2A14 aluminum alloy plate. The electrochemical corrosion behavior of the HSNC sample at the air of room temperature and low temperature liquid nitrogen was compared with that of the original sample in aqueous solution of 3.5%NaCl. The results showed that grain size increases from about 30 nm at the surface layer gradually to coarse grain size of the matrix when the sample was processed by HSNC. The total thickness of the plastic deformation layer is about 130 μm. The surface roughness Ra is about 0.6 μm with the surface microcrack disappeared. Compared to the original sample, the pitting corrosion resistance of the SFPB samples was not improved and the pitting corrosion resistance of the HSNC samples was improved. The self-corrosion potential and pitting corrosion potential increase respectively from -1.01228 and -0.29666 V in the original sample to -0.67445 and 0.026760 V at the air room temperature of the HSNC sample. The pitting corrosion resistance of the HSNC sample at the air of room temperature was the biggest. The analysis showed that the surface GNS grain, significant increase of the nanocrystal boundaries, the introduction of compressive residual stress and the decrease of surface roughness were beneficial to improve the pitting corrosion resistance.

Key wordsaluminum    alloy,    hybrid    surface    nanocrystallization,    gradient    nanostructure,    pitting    corrosion    resistance
收稿日期: 2016-03-23     
基金资助:* 国家自然科学基金项目51275517和西安理工大学特色研究项目2014TS002资助
图1  表面机械滚压处理(SMRT)装置示意图[13]
图3  2A14铝合金横截面显微组织的OM像
图4  经不同工艺SNC处理后2A14铝合金横截面形貌的SEM像
图5  SNC处理前后2A14铝合金显微硬度沿梯度的变化
图6  2A14铝合金经SFPB处理后在表层不同深度处截面的TEM像
图7  2A14铝合金经不同工艺SNC处理后表层截面的TEM像
图8  SNC处理前后2A14铝合金在3.5%NaCl水溶液中的动电位扫描极化曲线
Sample Self-corrosion current density / (Acm-2) Self-corrosion
potential / V
Pitting corrosion potential / V
Original 9.51×10-7 -1.01228 -0.29666
SFPB 9.65×10-7 -1.07179 -0.11525
SFPB+SMRT, 20 ℃ 5.71×10-8 -0.67445 0.02676
SFPB+SMRT, -196 ℃ 3.83×10-7 -0.70680 0.00445
表2  SNC处理前后2A14铝合金在3.5%NaCl水溶液中的电化学参数
图9  SNC处理前后2A14铝合金在3.5%NaCl水溶液中点蚀坑形貌的SEM像
图10  SNC处理前后2A14铝合金的EDS分析
Sample O Al Cl Cu
Original 67.61 21.44 8.40 2.55
SFPB 62.62 26.60 7.17 3.61
SFPB+SMRT, 20 ℃ 66.57 30.03 2.54 0.86
SFPB+SMRT, -196 ℃ 65.26 28.97 4.64 1.13
表3  图10 EDS分析中各元素含量
[1] Lu K, Lu J.J Mater Sci Technol, 1999; 15: 193
[2] Lu L, Sui M L, Lu K.Science, 2000; 287: 1463
[3] Lu K, Lu J.Mater Sci Eng, 2004; A375: 38
[4] Chen T, John H, Xu J, Lu Q, Hawk J, Liu X.Corros Sci, 2013; 77: 230
[5] Hajizadeh K, Maleki G H, Arabi A, Behnamian Y, Aghaie E, Farrokhi A, Hosseini M G, Fathi M H.Surf Interface Anal, 2015; 47: 978
[6] Huang R, Han Y.Mater Sci Eng, 2013; C33: 2353
[7] Jelliti S, Richard C, Retraint D, Roland T, Chemkhi M, Demangel C.Surf Coat Technol, 2013; 224: 82
[8] Ye W, Li Y, Wang F.Electrochim Acta, 2006; 51: 4426
[9] Raja K S, Namjoshi S A, Misra M.Mater Lett, 2005; 59: 570
[10] Ahmed A A, Mhaede M, Wollmann M, Wagner L.Appl Surf Sci, 2016; 363: 50
[11] Ma S N, Wang X, Wang X M.China Surf Eng, 2010; 24(5): 22
[11] (马世宁, 王翔, 王晓明. 中国表面工程, 2010; 24(5): 22)
[12] Balusamy T, Sankara Narayanan T S N, Ravichandran K, Park I S, Lee M H.Corros Sci, 2013; 74: 332
[13] Bai T.PhD Dissertation, East China University of Science and Technology, Shanghai, 2013(白涛. 华东理工大学博士学位论文, 上海, 2013)
[14] Klug H P, Alexander L E.X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. New York: John Wiley & Sons Wiley, 1974: 491
[15] Tao N R, Wang Z B, Tong W P, Sui M L, Lu J, Lu K.Acta Mater, 2002; 50: 4603
[16] Cheng M, Zhang D, Chen H, Qin W, Li J.Int J Adv Technol, 2016; 83: 123
[17] De A K, Murdock D C, Mataya M C, Speer J G, Matlock D K.Scr Mater, 2004; 50: 1445
[18] Kumar S A, Raman S G S, Narayanan T S N S.Surf Coat Technol, 2012; 206: 4425
[19] Liu L, Li Y, Wang F H.Acta Metall Sin, 2014; 50: 212
[19] (刘莉, 李瑛, 王福会. 金属学报, 2014; 50: 212)
[20] Tong W P, Tao N R, Wang Z B, Lu J, Lu K.Science, 2003; 289: 686
[21] Ge L L, Lu Z X, Jing X T, Liu Z L, Tian N.Acta Metall Sin, 2009; 45: 566
[21] (葛利玲, 卢正欣, 井晓天, 刘忠良, 田娜. 金属学报, 2009; 45: 566)
[22] Wang A X, Liu G, Zhou L, Wang K, Yang X H, Li Y.Acta Metall Sin, 2005; 41: 577
[22] (王爱香, 刘刚, 周蕾, 王科, 杨晓华, 李瑛. 金属学报, 2005; 41: 577)
[23] Cao C N.Principles of Electrochemistry of Corrosion. 3rd Ed., Beijing: Chemical Industry Press, 2008: 216
[23] (曹楚南. 腐蚀电化学原理. 第三版, 北京: 化学工业出版社, 2008: 216)
[24] Tong W P, Han Z, Wang L M, Lu J, Lu K.Surf Coat Technol, 2008; 202: 4957
[25] Sun Y, Bailey R.Surf Coat Technol, 2014; 253: 284
[26] Huang H W, Wang Z B, Liu L, Yong X P, Lu K.Acta Metall Sin, 2015; 51: 513
[26] (黄海威, 王镇波, 刘莉, 雍兴平, 卢柯. 金属学报, 2015; 51: 513)
[1] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[2] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[3] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[4] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[5] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[6] 王春辉, 杨光昱, 阿热达克·阿力玛斯, 李晓刚, 介万奇. 砂型3DP打印参数对ZL205A合金铸造性能的影响[J]. 金属学报, 2022, 58(7): 921-931.
[7] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[8] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[9] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[10] 王冠杰, 李开旗, 彭力宇, 张壹铭, 周健, 孙志梅. 高通量自动流程集成计算与数据管理智能平台及其在合金设计中的应用[J]. 金属学报, 2022, 58(1): 75-88.
[11] 赵婉辰, 郑晨, 肖斌, 刘行, 刘璐, 余童昕, 刘艳洁, 董自强, 刘轶, 周策, 吴洪盛, 路宝坤. 基于Bayesian采样主动机器学习模型的6061铝合金成分精细优化[J]. 金属学报, 2021, 57(6): 797-810.
[12] 孙佳孝, 杨可, 王秋雨, 季珊林, 包晔峰, 潘杰. 5356铝合金TIG电弧增材制造组织与力学性能[J]. 金属学报, 2021, 57(5): 665-674.
[13] 陈军洲, 吕良星, 甄良, 戴圣龙. AA 7055铝合金时效析出强化模型[J]. 金属学报, 2021, 57(3): 353-362.
[14] 刘刚, 张鹏, 杨冲, 张金钰, 孙军. 铝合金中的溶质原子团簇及其强韧化[J]. 金属学报, 2021, 57(11): 1484-1498.
[15] 李吉臣, 冯迪, 夏卫生, 林高用, 张新明, 任敏文. 非等温时效对7B50铝合金组织及性能的影响[J]. 金属学报, 2020, 56(9): 1255-1264.