|
|
服役条件下镍基高温合金应力松弛微观机制 |
江河( ),董建新,张麦仓,姚志浩,杨静 |
北京科技大学材料科学与工程学院 北京 100083 |
|
Stress Relaxation Mechanism for Typical Nickel-Based Superalloys Under Service Condition |
JIANG He( ),DONG Jianxin,ZHANG Maicang,YAO Zhihao,YANG Jing |
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
江河,董建新,张麦仓,姚志浩,杨静. 服役条件下镍基高温合金应力松弛微观机制[J]. 金属学报, 2019, 55(9): 1211-1220.
He JIANG,
Jianxin DONG,
Maicang ZHANG,
Zhihao YAO,
Jing YANG.
Stress Relaxation Mechanism for Typical Nickel-Based Superalloys Under Service Condition[J]. Acta Metall Sin, 2019, 55(9): 1211-1220.
[1] | PiresF, ClementsR, SantosF, , et al. Evaluation of the performance of Inconel 718 fasteners subjected to cathodic protection systems in offshore and subsea applications [A]. ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering [C]. the Netherlands: ASME, 2011: 165 | [2] | TechnologiesSPS. Superalloys Developed by SPS Technologies for Aerospace Fasteners [Z]. Jenkintown, PA, USA, 1998: 1 | [3] | NechacheA, BouzidA H. The effect of cylinder and hub creep on the load relaxation in bolted flanged joints [J]. J. Pressure Vessel Technol., 2008, 130: 031211 | [4] | GjestlandH, NussbaumG, RegazzoniG, , et al. Stress-relaxation and creep behaviour of some rapidly solidified magnesium alloys [J]. Mater. Sci. Eng., 1991, A134: 1197 | [5] | ZhouY M, ZhaoZ P, LiH L. The microstructure and stress ralaxation property of 12% Cr steel [J]. Mater. Mech. Eng., 1992, 16(1): 27 | [5] | 周晔明, 赵中平, 李惠琳. 12% Cr钢的组织与应力松弛性能 [J]. 机械工程材料, 1992, 16(1): 27) | [6] | YangX S, WangY J, WangG Y, , et al. Time, stress, and temperature-dependent deformation in nanostructured copper: Stress relaxation tests and simulations [J]. Acta Mater., 2016, 108: 252 | [7] | LiuW J, JonasJ J. A stress relaxation method for following carbonitride precipitation in austenite at hot working temperatures [J]. Metall. Trans., 1988, 19A: 1403 | [8] | LiuW J. A review of the stress-relaxation method for following the kinetics of precipitation, recovery and recrystallization [J]. Mater. Sci. Forum, 2012, 706-709: 2758 | [9] | MonajatiH, ZarandiF, JahaziM, , et al. Strain induced γ' precipitation in nickel base superalloy Udimet 720 using a stress relaxation based technique [J]. Scr. Mater., 2005, 52: 771 | [10] | RolphJ, EvansA, ParadowskaA, , et al. Stress relaxation through ageing heat treatment—A comparison between in situ and ex situ neutron diffraction techniques [J]. CR Phys., 2012, 13: 307 | [11] | D'souzaN, KelleherJ, QiuC L, , et al. The role of stress relaxation and creep during high temperature deformation in Ni-base single crystal superalloys—Implications to strain build-up during directional solidification [J]. Acta Mater., 2016, 106: 322 | [12] | WoodfordD A. Advances in the use of stress relaxation data for design and life assessment in combustion turbines [J]. JSME Int. J., 2002, 45A: 98 | [13] | CalvoJ, ShuS Y, CabreraJ M. Characterization of precipitation kinetics of Inconel 718 superalloy by the stress relaxation technique [J]. Mater. Sci. Forum, 2012, 706-709: 2393 | [14] | FossB J, GrayS, HardyM C, , et al. Analysis of shot-peening and residual stress relaxation in the nickel-based superalloy RR1000 [J]. Acta Mater., 2013, 61: 2548 | [15] | ZhuZ, ZhangL W, SongG Y, , et al. Study on stress relaxation behavior of Hastelloy C-276 alloy [J]. Rare Met. Mater. Eng., 2012, 41: 697 | [15] | 朱 智, 张立文, 宋冠宇等. Hastelloy C-276合金应力松弛行为的研究 [J]. 稀有金属材料与工程, 2012, 41: 697 | [16] | CollinsD M, D'SouzaN, PanwisawasC. In-situ neutron diffraction during stress relaxation of a single crystal nickel-base superalloy [J]. Scr. Mater., 2017, 131: 103 | [17] | NathalM V, BiererJ, EvansL, , et al. Stress relaxation behavior in single crystal superalloys [J]. Mater. Sci. Eng., 2015, A640: 295 | [18] | NiT W, DongJ X. Creep behaviors and mechanisms of Inconel 718 and Allvac 718 plus [J]. Mater. Sci. Eng., 2017, A700: 406 | [19] | ChenK, DongJ X, YaoZ H, , et al. Creep performance and damage mechanism for Allvac 718Plus superalloy [J]. Mater. Sci. Eng., 2018, A738: 308 | [20] | ZhangX M, MaoX P, DengZ Q, , et al. Stress relaxation characteristics in bending of Cu-Be alloys [J]. Chin. J. Nonferrous Met., 2001, 11: 988 | [20] | 张新明, 毛新平, 邓至谦等. 铍铜带材弯曲应力松弛的力学行为 [J]. 中国有色金属学报, 2001, 11: 988 | [21] | ChaturvediM C, HanY F. Strengthening mechanisms in Inconel 718 superalloy [J]. Met. Sci., 1983, 17: 145 | [22] | LinY C, ChenM S, ZhongJ. Prediction of 42CrMo steel flow stress at high temperature and strain rate [J]. Mech. Res. Commun., 2008, 35: 142 | [23] | LinY C, WenD X, DengJ, , et al. Constitutive models for high-temperature flow behaviors of a Ni-based superalloy [J]. Mater. Des., 2014, 59: 115 | [24] | WangY, ShaoW Z, ZhenL, , et al. Flow behavior and microstructures of superalloy 718 during high temperature deformation [J]. Mater. Sci. Eng., 2008, A497: 479 | [25] | LinY C, ChenX M, WenD X, , et al. A physically-based constitutive model for a typical nickel-based superalloy [J]. Comput. Mater. Sci., 2014, 83: 282 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|