|
|
高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展 |
吴静,刘永长(),李冲,伍宇婷,夏兴川,李会军 |
天津大学材料科学与工程学院水利安全与仿真国家重点实验室 天津 300354 |
|
Recent Progress of Microstructure Evolution and Performance of Multiphase Ni3Al-Based Intermetallic Alloy with High Fe and Cr Contents |
WU Jing,LIU Yongchang(),LI Chong,WU Yuting,XIA Xingchuan,LI Huijun |
State Key Lab of Hydraulic Engineering Simulation and Safety, School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China |
引用本文:
吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
Jing WU,
Yongchang LIU,
Chong LI,
Yuting WU,
Xingchuan XIA,
Huijun LI.
Recent Progress of Microstructure Evolution and Performance of Multiphase Ni3Al-Based Intermetallic Alloy with High Fe and Cr Contents[J]. Acta Metall Sin, 2020, 56(1): 21-35.
[1] | Huang Q Y, Li H K. Superalloys [M]. Beijing: Metallurgical Industry Press, 2000: 4 | [1] | (黄乾尧, 李汉康. 高温合金 [M]. 北京: 冶金工业出版社, 2000: 4) | [2] | Li J R, Xiong J C, Tang D Z. Advanced High Temperature Structural Materials and Technology (Book 1) [M]. Beijing: National Defense Industry Press, 2012: 5 | [2] | (李嘉荣, 熊继春, 唐定中. 先进高温结构材料与技术(上) [M]. 北京: 国防工业出版社, 2012: 5) | [3] | Reed R C. The Superalloys Fundamentals and Applications [M]. Cambridge, UK: Cambridge University Press, 2006: 19 | [4] | Tian S G, Wu J, Shu D L, et al. Influence of element Re on deformation mechanism within γ′ phase of single crystal nickel-based superalloys during creep at elevated temperatures [J]. Mater. Sci. Eng., 2014, A616: 260 | [5] | Tian S G, Zhang B S, Shu D L, et al. Creep properties and deformation mechanism of the containing 4.5Re/3.0Ru single crystal nickel-based superalloy at high temperatures [J]. Mater. Sci. Eng., 2015, A643: 119 | [6] | Zhang Y G, Han Y F, Chen G L. Structural Intermetallics [M]. Beijing: National Defense Industry Press, 2001: 611 | [6] | (张永刚, 韩雅芳, 陈国良. 金属间化合物结构材料 [M]. 北京: 国防工业出版社, 2001: 611) | [7] | David S A, Deevi S C. Welding of unique and advanced ductile intermetallic alloys for high-temperature applications [J]. Sci. Technol. Weld. Join., 2017, 22: 681 | [8] | Westbrook J H. Defect structure and the temperature dependence of hardness of an intermetallic compound [J]. J. Electrochem. Soc., 1957, 104: 369 | [9] | Liu C T, Sikka V K. Nickel aluminides for structural use [J]. JOM, 1986, 38(5): 19 | [10] | Sikka V K, Mavity J T, Anderson K. Processing of nickel aluminides and their industrial applications [J]. Mater. Sci. Eng., 1992, A153: 712 | [11] | Sikka V K, Deevi S C, Viswanathan S, et al. Advances in processing of Ni3Al-based intermetallics and applications [J]. Intermetallics, 2000, 8: 1329 | [12] | Jozwik P, Polkowski W, Bojar Z. Applications of Ni3Al based intermetallic alloys—Current stage and potential perceptivities [J]. Materials, 2015, 8: 2537 | [13] | Deevi S C, Sikka V K. Nickel and iron aluminides: An overview on properties, processing, and applications [J]. Intermetallics, 1996, 4: 357 | [14] | Aoki K, Izumi O. Improvement in room temperature ductility of the L12 type intermetallic compound Ni3Al by boron addition [J]. J. Japan Inst. Met., 1979, 43: 1190 | [15] | Liu C T, White C L, Horton J A. Effect of boron on grain-boundaries in Ni3Al [J]. Acta Metall., 1985, 33: 213 | [16] | Horton J A, Miller M K. Atom probe analysis of grain boundaries in rapidly-solidified Ni3Al [J]. Acta Metall., 1987, 35: 133 | [17] | Guo J T, Li H, Sun C, et al. Effect of Zr, Cr and B additives on microstructure and mechanical properties of Ni3Al alloys [J]. Acta Metall. Sin., 1989, 25(6): 22 | [17] | (郭建亭, 李 辉, 孙 超等. Zr, Cr和B对Ni3Al合金组织和力学性能的影响 [J]. 金属学报, 1989, 25(6): 22) | [18] | Li Y F, Guo J T, Zhou L F, et al. Effect of recrystallization on room-temperature mechanical properties of Zr-doped Ni3Al alloy [J]. Mater. Lett., 2004, 58: 1853 | [19] | Sikka V K, Santella M L, Angelini P, et al. Large-scale manufacturing of nickel aluminide transfer rolls for steel austenitizing furnaces [J]. Intermetallics, 2004, 12: 837 | [20] | Lee D B, Santella M L. High temperature oxidation of Ni3Al alloy containing Cr, Zr, Mo, and B [J]. Mater. Sci. Eng., 2004, A374: 217 | [21] | Tan Y N, Zhao X H, Gui Z L. Development and application of BKHA series Ni3Al-based superalloy in Russia [J]. Aviat. Maint. Eng., 1997, (5): 6 | [21] | (谭永宁, 赵希宏, 桂中楼. 俄罗斯ВКНА系列Ni3Al基合金的发展和应用 [J]. 航空工程与维修, 1997, (5): 6) | [22] | Han Y F, Li S H, Jin Y, et al. Effect of 900-1150 ℃ aging on the microstructure and mechanical properties of a DS casting Ni3Al-base alloy IC6 [J]. Mater. Sci. Eng., 1995, A192-193: 899 | [23] | Xiao C B, Han Y F, Li S S, et al. Effect of high temperature aging on microstructure and mechanical properties of a directionally solidified Ni3Al base alloy IC6A [J]. Trans. Nonferrous Met. Soc. China, 2002, 12: 656 | [24] | Li P, Li S S, Han Y F. Influence of solution heat treatment on microstructure and stress rupture properties of a Ni3Al base single crystal superalloy IC6SX [J]. Intermetallics, 2011, 19: 182 | [25] | Zhang H J, Wen W D, Cui H T. Behaviors of IC10 alloy over a wide range of strain rates and temperatures: Experiments and modeling [J]. Mater. Sci. Eng., 2009, A504: 99 | [26] | Zhang H J, Wen W D, Cui H T. An experimental study on constitutive equations of alloy IC10 over a wide range of temperatures and strain rates [J]. Mater. Des., 2012, 36: 130 | [27] | Li J, Hou J B, Zhang S. Effect of braze on creep strength at high temperature of TLP diffusion bonding joint for IC10 alloy [J]. Trans. Mater. Heat Treat., 2016, 37(1): 195 | [27] | (李 菊, 侯金保, 张 胜. 钎焊循环对IC10合金TLP扩散焊接头高温持久性能影响 [J]. 材料热处理学报, 2016, 37(1): 195) | [28] | Cui D L, Xie X Y, Li S S, et al. Heat treatment of a Ni3Al-based single crystal alloy IC32 [J]. Mater. Sci. Forum, 2013, 747-748: 665 | [29] | Zhang X E, Luo H L, Li S P, et al. Effection of alloying elements on microstructures of MX 246 and MX 246A Ni3Al-based alloys [J]. J. Iron Steel Res. Inter., 2007, 14(5 suppl.1: 45 | [30] | Feng D, Li S P, Luo H L, et al. Microstructure and properties of modified cast Ni3Al-base MX246 alloys [J]. Acta Metall. Sin., 2002, 38: 1181 | [30] | (冯 涤, 李尚平, 骆合力等. 改性铸造Ni3Al基合金MX246组织与性能研究 [J]. 金属学报, 2002, 38: 1181) | [31] | Wang J T, Han W, Luo H L, et al. Hot deformation behavior of Ni3Al-based alloy MX246A [J]. J. Iron Steel Res. Inter., 2014, 21: 264 | [32] | Luo H L, Li S P, Cao X, et al. A weldable and high-strength Ni3Al based MX246AG alloy [J]. J. Iron Steel Res., 2011, 23(suppl. 2): 559 | [32] | (骆合力, 李尚平, 曹 栩等. 可焊高强Ni3Al基MX246AG合金研究 [J]. 钢铁研究学报, 2011, 23(增刊2): 559) | [33] | Ochial S, Oya Y, Suzuki T. Alloying behaviour of Ni3Al, Ni3Ga, Ni3Si and Ni3Ge [J]. Acta Metall., 1984, 32: 289 | [34] | Taub A I, Chang K M, Liu C T. Effects of testing environment on the elevated temperature ductility of boron-doped Ni3Al [J]. Scr. Metall., 1986, 20: 1613 | [35] | Liu C T, White C L, Lee E H. Effect of test environment on ductility and fracture behavior of boron-doped Ni3Al at 600 ℃ [J]. Scr. Metall., 1985, 19: 1247 | [36] | George E P, Liu C T, Pope D P. Environmental embrittlement: The major cause of room-temperature brittleness in polycrystalline Ni3Al [J]. Scr. Metall. Mater., 1992, 27: 365 | [37] | Liu C T, Jemian W, Inouye H, et al. Initial development of nickel and nickel-iron aluminides for structural uses (No.ORNL-6067) [R]. TN (USA): Oak Ridge National Laboratory, 1984 | [38] | Takasugi T, Izumi O, Masahashi N. Electronic and structural studies of grain boundary strength and fracture in Ll2 ordered alloys—II. On the effect of third elements in Ni3Al alloy [J]. Acta Metall., 1985, 33: 1259 | [39] | Guo J T. Effects of several minor elements on superalloys and their mechanism [J]. Chin. J. Nonferrous Met., 2011, 21: 465 | [39] | (郭建亭. 几种微量元素在高温合金中的作用与机理 [J]. 中国有色金属学报, 2011, 21: 465) | [40] | Popov A A. Effect of electronic nature and substitution behavior of ternary microadditions on the ductility of polycrystalline nickel aluminides [J]. Acta Mater., 1997, 45: 1613 | [41] | Liu C T, White C L. Dynamic embrittlement of boron-doped Ni3Al alloys at 600 ℃ [J]. Acta Metall., 1987, 35: 643 | [42] | ?ermák J, Rothová V. Surface barrier for hydrogen permeability in Ni3Al—Influence of Cr, Fe and Zr [J]. Intermetallics, 2001, 9: 403 | [43] | Chen J Y, Zhao B, Feng Q, et al. Effects of Ru and Cr on γ/γ′ microstructural evolution of Ni-based single crystal superalloys during heat treatment [J]. Acta Metall. Sin., 2010, 46: 897 | [43] | (陈晶阳, 赵 宾, 冯 强等. Ru和Cr对镍基单晶高温合金γ/γ′热处理组织演变的影响 [J]. 金属学报, 2010, 46: 897) | [44] | Chen J Y, Feng Q, Cao L M, et al. Improvement of stress-rupture property by Cr addition in Ni-based single crystal superalloy [J]. Mater. Sci. Eng., 2011, A528: 3791 | [45] | Ai C, Li S S, Zhao X B, et al. Influence of solidification history on precipitation behavior of TCP phase in a completely heat-treated Ni3Al based single crystal superalloy during thermal exposure [J]. J. Alloys Compd., 2017, 722: 740 | [46] | Shi Z X, Liu S Z, Wang X G, et al. Effects of Cr content on microstructure and mechanical properties of single crystal superalloy [J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 776 | [47] | Sato A, Yeh A C, Kobayashi T, et al. Fifth generation Ni based single crystal superalloy with superior elevated temperature properties [J]. Energy Mater., 2007, 2: 19 | [48] | Caron P, Khan T. Evolution of Ni-based superalloys for single crystal gas turbine blade applications [J]. Aerosp. Sci. Technol., 1999, 3: 513 | [49] | Sato A, Harada H, Yokokawa T, et al. The effects of ruthenium on the phase stability of fourth generation Ni-base single crystal superalloys [J]. Scr. Mater., 2006, 54: 1679 | [50] | Guo H B, Gong S K, Xu H B. Research progress on new high/ultra-high temperature thermal barrier coatings and processing technologies [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2722 | [50] | (郭洪波, 宫声凯, 徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展 [J]. 航空学报, 2014, 35: 2722) | [51] | Dong J X, Xie X S. α-Cr precipitation behavior and its effect on high Cr-containing superalloys [J]. Acta Metall. Sin., 2005, 41: 1159 | [51] | (董建新, 谢锡善. 不同Cr含量高温合金中α-Cr相析出行为及作用 [J]. 金属学报, 2005, 41: 1159) | [52] | Miller C, Field R, Kaufman M. Phase stability of γ-Ni2Cr and α-Cr in the Ni-Cr binary [J]. Acta Mater., 2018, 157: 1 | [53] | Nicholls J R, Rawlings R D. A M?ssbauer effect study of Ni3Al with iron additions [J]. Acta Metall., 1977, 25: 187 | [54] | David S A, Jemian W A, Liu C T, et al. Welding and weldability of nickel-iron aluminides [J]. Weld. Res. Suppl., 1985, 1: 22 | [55] | Guard R W, Westbrook J H. Alloying behavior of Ni3Al (γ-phase) [J]. Trans. AIMME, 1959, 215: 807 | [56] | Li Y F, Li C, Wu J, et al. Formation of multiply twinned mortensite plates in rapidly solidified Ni3Al-based superalloys [J]. Mater. Lett., 2019, 250: 147 | [57] | Rivlin V G, Raynor G V. Critical evaluation of constitution of aluminium-iran-silicon systems [J]. Int. Met. Rev., 1981, 26: 133 | [58] | Wu Y T, Liu Y C, Li C, et al. Deformation behavior and processing maps of Ni3Al-based superalloy during isothermal hot compression [J]. J. Alloys Compd., 2017, 712: 687 | [59] | Gao S, Hou J S, Dong K X, et al. Influences of cooling rate after solution treatment on microstructural evolution and mechanical properties of superalloy Rene 80 [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 261 | [60] | Behrouzghaemi S, Mitchell R J. Morphological changes of γ' precipitates in superalloy IN738LC at various cooling rates [J]. Mater. Sci. Eng., 2008, A498: 266 | [61] | Huang G C, Liu G Q, Feng M N, et al. The effect of cooling rates from temperatures above the γ′ solvus on the microstructure of a new nickel-based powder metallurgy superalloy [J]. J. Alloys Compd., 2018, 747: 1062 | [62] | Sajjadi S A, Elahifar H R, Farhangi H. Effects of cooling rate on the microstructure and mechanical properties of the Ni-base superalloy UDIMET 500 [J]. J. Alloys Compd., 2008, 455: 215 | [63] | Singh A R P, Nag S, Hwang J Y, et al. Influence of cooling rate on the development of multiple generations of γ′ precipitates in a commercial nickel base superalloy [J]. Mater. Charact., 2011, 62: 878 | [64] | Milenkovic S, Sabirov I, LLorca J. Effect of the cooling rate on microstructure and hardness of MAR-M247 Ni-based superalloy [J]. Mater. Lett., 2012, 73: 216 | [65] | Wu J, Li C, Liu Y C, et al. Effect of annealing treatment on microstructure evolution and creep behavior of a multiphase Ni3Al-based superalloy [J]. Mater. Sci. Eng., 2019, A743: 623 | [66] | Liang Y C, Guo J T, Xie Y, et al. Effect of growth rate on the tensile properties of DS NiAl/Cr(Mo) eutectic alloy produced by liquid metal cooling technique [J]. Intermetallics, 2010, 18: 319 | [67] | Sheng L Y, Xie Y, Xi T F, et al. Microstructure characteristics and compressive properties of NiAl-based multiphase alloy during heat treatments [J]. Mater. Sci. Eng., 2011, A528: 8324 | [68] | Sheng L Y, Zhang W, Guo J T, et al. Microstructure evolution and mechanical properties' improvement of NiAl-Cr(Mo)-Hf eutectic alloy during suction casting and subsequent HIP treatment [J]. Intermetallics, 2009, 17: 1115 | [69] | Wang L, Shen J. Effect of withdrawal rate on the microstructure and room temperature mechanical properties of directionally solidified NiAl-Cr(Mo)-(Hf, Dy)-4Fe alloy [J]. J. Alloys Compd., 2016, 663: 187 | [70] | Lapin J, Pelachová T, Bajana O. Microstructure and mechanical properties of a directionally solidified and aged intermetallic Ni-Al-Cr-Ti alloy with β-γ'-γ-α structure [J]. Intermetallics, 2000, 8: 1417 | [71] | Kim S H, Wee D M, Oh M H. Effects of ternary additions on the thermoelastic martensitic transformation of NiAl [J]. Metall. Mater. Trans., 2003, 34A: 2089 | [72] | Zhou L, Mehta A, Cho K, et al. Composition-dependent interdiffusion coefficient, reduced elastic modulus and hardness in γ-, γ′- and β-phases in the Ni-Al system [J]. J. Alloys Compd., 2017, 727: 153 | [73] | Wu J, Li C, Liu Y C, et al. Influences of solution cooling rate on microstructural evolution of a multiphase Ni3Al-based intermetallic alloy [J]. Intermetallics, 2019, 109: 48 | [74] | Qian M, Luo H L, Ding C H, et al. The effect of long term high temperature annealing on twinning and detwinning of the wrought Ni3Al-based alloy [J]. Mater. Charact., 2017, 132: 458 | [75] | Misra A, Gibala R. Plasticity in multiphase intermetallics [J]. Intermetallics, 2000, 8: 1025 | [76] | Campbell C E. Assessment of the diffusion mobilites in the γ' and B2 phases in the Ni-Al-Cr system [J]. Acta Mater., 2008, 56: 4277 | [77] | Duan X T, Li S P, Luo H L, et al. Heat treatment process for Ni3Al-based wrought superalloy [J]. J. Iron Steel Res., 2015, 27(11): 60 | [77] | (段修涛, 李尚平, 骆合力等. 变形Ni3Al基合金的热处理工艺 [J]. 钢铁研究学报, 2015, 27(11): 60) | [78] | Wu Y T, Liu Y C, Li C, et al. Coarsening behavior of γ′ precipitates in the γ'+γ area of a Ni3Al-based alloy [J]. J. Alloys Compd., 2019, 771: 526 | [79] | Cui C Y, Guo J T, Qi Y H, et al. Effect of Hf on Microstructure and high-temperature strength of a cast NiAl/Cr(Mo) alloy [J]. Mater. Trans., 2001, 42: 1700 | [80] | Zaitsev A A, Sentyurina Z A, Levashov E A, et al. Structure and properties of NiAl-Cr(Co, Hf) alloys prepared by centrifugal SHS casting followed by vacuum induction remelting. Part 2—Evolution of the structure and mechanical behavior at high temperature [J]. Mater. Sci. Eng., 2017, A690: 473 | [81] | Zaitsev A A, Sentyurina Z A, Levashov E A, et al. Structure and properties of NiAl-Cr(Co, Hf) alloys prepared by centrifugal SHS casting. Part 1—Room temperature investigations [J]. Mater. Sci. Eng., 2017, A690: 463 | [82] | Pekarskaya E, Botton G A, Jones C N, et al. The effect of annealing on the microstructure and tensile properties of a β/γ' Ni-Al-Fe alloy [J]. Intermetallics, 2000, 8: 903 | [83] | Misra A, Gibala R, Noebe R D. Deformation and fracture behavior of a directionally solidified β/γ' Ni-30 at. pct Al alloy [J]. Metall. Mater. Trans., 1999, 30A: 1003 | [84] | Yang R, Leake J A, Cahn R W. Three-phase (β+β'+γ') Ni-Al-Ti-(Cr, Fe) alloys for high temperature use [J]. Mater. Sci. Eng., 1992, A152: 227 | [85] | Hu L, Hu W, Gottstein G, et al. Investigation into microstructure and mechanical properties of NiAl-Mo composites produced by directional solidification [J]. Mater. Sci. Eng., 2012, A539: 211 | [86] | Peng W K, Run C S, Dai Y F, et al. Study on welding properties and technology of Ni3Al-based superalloy JG4356 [J]. Hot Work. Technol., 2019, 48(1): 55 | [86] | (彭为康, 润长生, 戴延丰等. Ni3Al基高温合金JG4356焊接性能和工艺研究 [J]. 热加工工艺, 2019, 48(1): 55) | [87] | Yang Z W, Lian J, Cai X Q, et al. Microstructure and mechanical properties of Ni3Al-based alloy joint transient liquid phase bonded using Ni/Ti interlayer [J]. Intermetallics, 2019, 109: 179 | [88] | Liu Y C, Zhang H J, Li C, et al. Microstructure evolution of inconel 718 superalloy during hot working and its recent development tendency [J]. Acta Metall. Sin., 2018, 54: 1653 | [88] | (刘永长, 张宏军, 李 冲等. Inconel 718变形高温合金热加工组织演变与发展趋势 [J]. 金属学报, 2018, 54: 1653) | [89] | Liu Y C, Guo Q Y, Li C, et al. Recent progress on evolution of precipitates in Inconel 718 superalloy [J]. Acta Metall. Sin., 2016, 52: 1259 | [89] | (刘永长, 郭倩颖, 李 冲等. Inconel 718高温合金中析出相演变研究进展 [J]. 金属学报, 2016, 52: 1259) | [90] | Zhang H J, Li C, Guo Q Y, et al. Improving creep resistance of nickel-based superalloy Inconel 718 by tailoring gamma double prime variants [J]. Scr. Mater., 2019, 164: 66 | [91] | Wang F, Xu W L, Ma D X, et al. Co-growing mechanism of γ/γ' eutectic on MC-type carbide in Ni-based single crystal superalloys [J]. J. Alloys Compd., 2019, 792: 505 | [92] | Zhang X, Li H W, Zhan M. Mechanism for the macro and micro behaviors of the Ni-based superalloy during electrically-assisted tension: Local Joule heating effect [J]. J. Alloys Compd., 2018, 742: 480 | [93] | Reed R C, Tao T, Warnken N. Alloys-by-design: Application to nickel-based single crystal superalloys [J]. Acta Mater., 2009, 57: 5898 | [94] | Tian C G, Han G M, Cui C Y, et al. Effects of stacking fault energy on the creep behaviors of Ni-base superalloy [J]. Mater. Des., 2014, 64: 316 | [95] | Kontis P, Yusof H A M, Pedrazzini S, et al. On the effect of boron on grain boundary character in a new polycrystalline superalloy [J]. Acta Mater., 2016, 103: 688 | [96] | Zhang H J, Li C, Liu Y C, et al. Effect of hot deformation on γ" and δ phase precipitation of Inconel 718 alloy during deformation&isothermal treatment [J]. J. Alloys Compd., 2017, 716: 65 | [97] | Wan H Y, Zhou Z J, Li C P, et al. Effect of scanning strategy on grain structure and crystallographic texture of Inconel 718 processed by selective laser melting [J]. J. Mater. Sci. Technol., 2018, 34: 1799 | [98] | Wang G W, Liang J J, Yang Y H, et al. Effects of scanning speed on microstructure in laser surface-melted single crystal superalloy and theoretical analysis [J]. J. Mater. Sci. Technol., 2018, 34: 1315 | [99] | Bai P, Zhang H R, Wan B B, et al. Effect of trace O element on high-temperature wettability between Ni3Al melt and Y2O3 ceramic [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 552 | [100] | Wu J, Li C, Liu Y C, et al. Formation and widening mechanisms of envelope structure and its effect on creep behavior of a multiphase Ni3Al-based intermetallic alloy [J]. Mater. Sci. Eng., 2019, A763: 138158 | [101] | Wu J, Li C, Liu Y C, et al. Precipitation of intersected plate-like γ' phase in β and its effect on creep behavior of multiphase Ni3Al-based intermetallic alloy [J]. Mater. Sci. Eng., 2019, A767: 138439 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|