Please wait a minute...
金属学报  2021, Vol. 57 Issue (12): 1559-1566    DOI: 10.11900/0412.1961.2021.00093
  研究论文 本期目录 | 过刊浏览 |
单晶高温合金共晶溶解行为的差热分析
张少华(), 谢光, 董加胜, 楼琅洪
中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Investigation on Eutectic Dissolution Behavior of Single Crystal Superalloy by Differential Scanning Calorimetry
ZHANG Shaohua(), XIE Guang, DONG Jiasheng, LOU Langhong
Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

张少华, 谢光, 董加胜, 楼琅洪. 单晶高温合金共晶溶解行为的差热分析[J]. 金属学报, 2021, 57(12): 1559-1566.
Shaohua ZHANG, Guang XIE, Jiasheng DONG, Langhong LOU. Investigation on Eutectic Dissolution Behavior of Single Crystal Superalloy by Differential Scanning Calorimetry[J]. Acta Metall Sin, 2021, 57(12): 1559-1566.

全文: PDF(2521 KB)   HTML
摘要: 

选用一种第二代单晶高温合金,基于差示扫描量热技术(DSC),采用对比法测量了铸态和完全热处理态样品的升温DSC曲线,研究了保温过程中单晶合金中γ′相、γ/γ′共晶相的相变温度变化规律。结果表明,1290和1300℃保温过程中,随着保温时间的延长,γ′相溶解温度和γ/γ′共晶相熔化温度先显著提高,然后缓慢增加。1300℃保温过程中,γ/γ′共晶体积分数随保温时间延长而逐渐降低。而1290℃保温过程中,随保温时间延长,共晶体积分数出现了先降低后增加的反常现象,这与金相实验方法相吻合。分析表明,枝晶间粗大γ′相未完全溶解,造成枝晶轴Ta元素向枝晶间扩散,促使共晶长大,从而使共晶体积分数增加。

关键词 单晶高温合金差示扫描量热技术固溶热处理共晶相变    
Abstract

Ni-based single crystal (SX) superalloys are used for the production of blades in gas turbines and aircraft engines because of their superior mechanical performance at high temperatures. To improve the temperature capabilities of modern SX superalloys, specific refractory elements are added to the alloys. This leads to micro-segregation in alloys, requiring a complex heat treatment process to eliminate γ/γ′ eutectic. Therefore, the dissolution process of γ/γ′ eutectic must be understood. In this study, a second-generation Ni-based SX superalloy was used to investigate the effect of extended holding time at 1290oC and 1300oC on the γ′ phase dissolving temperature (Tγ) and γ/γ′ eutectic phase-melting temperature (Tγ/γ), respectively. The method involves measuring the differential heating curves of as-cast and as heat-treated samples using DSC. The results showed that Tγ′ and Tγ/γ′ increased at a holding time of 2 h. However, with an increase in the holding time, the temperature increase was not obvious. The volume fraction of γ/γ′ eutectic decreased with the extended holding at 1300oC, while the volume fraction of γ/γ′ eutectic increased after holding at 1290oC for 8 h. This abnormal phenomenon was confirmed by the metallographic experiments. The analyses showed that the increase in the eutectic volume fraction was due to the incomplete dissolution of coarse γ′ phase at the inter-dendritic region, which resulted in the diffusion of Ta element from dendrite core to the inter-dendritic region, promoting eutectic growth.

Key wordssingle crystal superalloy    differential scanning calorimetry    solution heat treatment    eutectic phase transition
收稿日期: 2021-03-01     
ZTFLH:  TG132.3  
基金资助:国家自然科学基金项目(51771204)
作者简介: 张少华,男,1984年生,副研究员,博士
图1  共晶相溶解动力学实验温度程序
图2  DD414单晶高温合金铸态和热处理态组织(1310℃、6 h)的OM和SEM像
PositionAlCrMoCoTaWReNi
Nominal composition5.55210963Bal.
Dendritic core5.125.021.6611.404.947.693.40Bal.
Fine γ/γ′ eutectic6.523.871.619.2611.083.531.35Bal.
Coarse γ/γ′ eutectic7.402.050.867.6614.542.280.32Bal.
表1  EPMA测量的铸态样品枝晶轴、细小γ/γ′共晶和粗大γ/γ′共晶的成分 (mass fraction / %)
图3  DD414单晶高温合金在1290℃保温不同时间的共晶形貌及分布图
图4  DD414单晶高温合金在1300℃保温不同时间的共晶形貌
图5  DD414单晶合金在1290和1300℃保温不同时间的升温DSC曲线
图6  DD414单晶合金在1290和1300℃固溶处理时,γ′相溶解温度(Tγ′)、共晶相开始熔化温度(Tγ/γ′)和熔化结束温度(TEnd, γ/γ′)随保温时间的变化
图7  DD414单晶高温合金共晶相含量随保温时间的变化
图8  DD414单晶高温合金等温保温过程中的ln[-ln(1 - f(t))]-lnt曲线
1 Sims C T, Stoloff N S, Hagel W C. Superalloys II [M]. New York: John Wiley, 1987: 615
2 Gell M, Duhl D N, Giamei A F. The development of single crystal superalloy turbine blades [A]. Superalloys 1980 [C]. Warrendale, PA: TMS, 1980: 205
3 Zhang J, Wang L, Wang D, et al. Recent progress in research and development of nickel-based single crystal superalloys [J]. Acta Metall. Sin., 2019, 55: 1077
3 张 健, 王 莉, 王 栋等. 镍基单晶高温合金的研发进展 [J]. 金属学报, 2019, 55: 1077
4 Kearsey R M, Beddoes J C, Jones P, et al. Compositional design considerations for microsegregation in single crystal superalloy systems [J]. Intermetallics, 2004, 12: 903
5 Chen J Y, Feng Q, Sun Z Q. Topologically close-packed phase promotion in a Ru-containing single crystal superalloy [J]. Scr. Mater., 2010, 63: 795
6 Wilson B C, Hickman J A, Fuchs G E. The effect of solution heat treatment on a single-crystal Ni-based superalloy [J]. JOM, 2003, 55(3): 35
7 Fuchs G E. Solution heat treatment response of a third generation single crystal Ni-base superalloy [J]. Mater. Sci. Eng., 2001, A300: 52
8 Zhang J H, Zhang Z Y, Li Y A. Investigation of the heat treatment in a single crystal nickel-base superalloy [J]. Dev. Appl. Mater., 1997, 12(1): 27
8 张静华, 张志亚, 李英敖. DD8单晶镍基高温合金热处理制度研究 [J]. 材料开发与应用, 1997, 12(1): 27
9 Han M, Luo Y S. Study on modified heat treatment for DD3 single crystal superalloys [J]. J. Aeronaut. Mater., 2009, 29(2): 34
9 韩 梅, 骆宇时. 改进DD3单晶高温合金热处理工艺的研究 [J]. 航空材料学报, 2009, 29(2): 34
10 Li J R, Liu S Z, Wang X G, et al. Development of a low-cost third generation single crystal superalloy DD9 [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys [C]. Seven Springs, Pennsylvania: TMS, 2016: 57
11 Su X L, Xu Q Y, Wang R N, et al. Microstructural evolution and compositional homogenization of a low Re-bearing Ni-based single crystal superalloy during through progression of heat treatment [J]. Mater. Des., 2018, 141: 296
12 Ai C, Xi L G, Wang B, et al. Investigation on solution heat treatment response and γ′ solvus temperature of a Mo-rich second generation Ni based single crystal superalloy [J]. Intermetallics, 2020, 125: 106896
13 Hu Z Q, Liu L R, Jin T. et al. Development of the Ni-base single crystal superalloys [J]. Aeroengine, 2005, 31(3): 1
13 胡壮麒, 刘丽荣, 金 涛等. 镍基单晶高温合金的发展 [J]. 航空发动机, 2005, 31(3): 1
14 Zhang Y B, Liu L, Huang T W, et al. Investigation on a ramp solution heat treatment for a third generation nickel-based single crystal superalloy [J]. J. Alloys Compd., 2017, 723: 922
15 Pang H T, Zhang L J, Hobbs R A, et al. Solution heat treatment optimization of fourth-generation single-crystal nickel-base superalloys [J]. Metall. Mater. Trans., 2012, 43A: 3264
16 Zhang Y B, Liu L, Huang T W, et al. Investigation on remelting solution heat treatment for nickel-based single crystal superalloys [J]. Scr. Mater., 2017, 136: 74
17 Yue X D, Li J R, Shi Z X, et al. Designing of the homogenization-solution heat treatment for advanced single crystal superalloys [J]. Rare Met. Mater. Eng., 2017, 46: 1530
18 Hegde S R, Kearsey R M, Beddoes J C. Designing homogenization-solution heat treatments for single crystal superalloys [J]. Mater. Sci. Eng., 2010, A527: 5528
19 Lee H S, Kim D H, Kim D S, et al. Microstructural changes by heat treatment for single crystal superalloy exposed at high temperature [J]. J. Alloys Compd., 2013, 56: 135
20 Wen Y H, Lill J V, Chen S L, et al. A ternary phase-field model incorporating commercial CALPHAD software and its application to precipitation in superalloys [J]. Acta Mater., 2010, 58: 875
21 Zhang S H, Xie G, Zhang G, et al. Differential thermal analysis method for measuring initial melting teperature of single crystal superalloy [P]. Chin Pat, 202010283750.X, 2020
21 张少华, 谢 光, 张 功等. 一种测量单晶高温合金初熔温度的差热分析方法 [P]. 中国专利, 202010283750.X, 2020)
22 Yang Y F, Zhu K H, Wang Y J, et al. Analysis and discussion of differential thermal figures in physichemical experiment [J]. J. Zhejiang Norm. Univ. (Nat. Sci.), 2002, 25: 279
22 杨元法, 朱凯汉, 王月娟等. 物理化学实验中差热图谱的解析讨论 [J]. 浙江师范大学学报(自然科学版), 2002, 25: 279
23 Wagner M. Thermal Analysis in Practice [M]. Munich: Hanser, 2018: 101
24 Avrami M. Kinetics of phase change. I General theory [J]. J. Chem. Phys., 1939, 7: 1103
25 Avrami M. Kinetics of phase change. II Transformation-time relations for random distribution of nuclei [J]. J. Chem. Phys., 1940, 8: 212
26 Avrami M. Granulation, phase change, and microstructure kinetics of phase change. III [J]. J. Chem. Phys., 1941, 9: 177
27 Sun Z Y, Liu C M. Diffusion and Phase Transformation in Alloys [M]. Shenyang: Northeastern University Press, 2002: 39
27 孙振岩, 刘春明. 合金中的扩散与相变 [M]. 沈阳: 东北大学出版社, 2002: 39
28 Karunaratne M S A, Cox D C, Carter P, et al. Modelling of the microsegregation in CMSX-4 superalloy and its homogenisation during heat treatment [A]. Superalloys 2000 [C]. Pennsylvania: TMS, 2000: 263
29 Jiang C, Gleeson B. Site preference of transition metal elements in Ni3Al [J]. Scr. Mater., 2006, 55: 433
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[4] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[6] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[7] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[8] 李文文, 陈波, 熊华平, 尚泳来, 毛唯, 程耀永. 第二代单晶高温合金DD6高性能钎焊接头的组织及力学性能[J]. 金属学报, 2021, 57(8): 959-966.
[9] 王迪, 王栋, 谢光, 王莉, 董加胜, 陈立佳. Pt-Al涂层对一种镍基单晶高温合金抗热腐蚀行为的影响[J]. 金属学报, 2021, 57(6): 780-790.
[10] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[11] 马德新, 赵运兴, 徐维台, 皮立波, 李重行. 高温合金单晶铸件中共晶组织分布的表面效应[J]. 金属学报, 2021, 57(12): 1539-1548.
[12] 和思亮, 赵云松, 鲁凡, 张剑, 李龙飞, 冯强. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响[J]. 金属学报, 2020, 56(9): 1195-1205.
[13] 刘金来, 叶荔华, 周亦胄, 李金国, 孙晓峰. 一种单晶高温合金的弹性性能的各向异性[J]. 金属学报, 2020, 56(6): 855-862.
[14] 赵旭,孙元,侯星宇,张洪宇,周亦胄,丁雨田. 取向偏差对镍基单晶高温合金钎焊接头组织与力学性能的影响[J]. 金属学报, 2020, 56(2): 171-181.
[15] 李嘉荣,谢洪吉,韩梅,刘世忠. 第二代单晶高温合金高周疲劳行为研究[J]. 金属学报, 2019, 55(9): 1195-1203.