Please wait a minute...
金属学报  2022, Vol. 58 Issue (8): 1035-1043    DOI: 10.11900/0412.1961.2021.00049
  研究论文 本期目录 | 过刊浏览 |
粗糙表面高强铝合金导线疲劳寿命预测
宋文硕1, 宋竹满2, 罗雪梅2, 张广平2, 张滨1()
1.东北大学 材料科学与工程学院 材料各向异性与织构教育部重点实验室 沈阳 110819
2.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface
SONG Wenshuo1, SONG Zhuman2, LUO Xuemei2, ZHANG Guangping2, ZHANG Bin1()
1.Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
Wenshuo SONG, Zhuman SONG, Xuemei LUO, Guangping ZHANG, Bin ZHANG. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. Acta Metall Sin, 2022, 58(8): 1035-1043.

全文: PDF(2873 KB)   HTML
摘要: 

研究了6101铝合金单股导线的表面粗糙度对其疲劳性能的影响。结果表明,随着表面粗糙度参数(轮廓最大高度Rz)的增加,铝合金导线的疲劳强度逐渐降低,当Rz从57.9 μm增加到161.7 μm时,疲劳极限下降了约36.4%。分析认为,Rz的增加引起理论应力集中系数 Kt的增加,导致疲劳裂纹更易于萌生,致使样品的疲劳强度较低。结合有限元分析研究了RzKt的影响,将表面粗糙度等效成尺寸为 a0 = πLRz2 (L为平均缺口宽度)的初始裂纹,基于能量理论和Pairs公式提出了不同表面粗糙度铝合金导线疲劳寿命预测模型,有效地预测了铝合金导线疲劳服役可靠性。

关键词 铝合金导线表面粗糙度应力集中疲劳寿命    
Abstract

The power industry is changing from rapid growth to high-quality development, and there are urgent demands for the high-quality and high-service reliability of overhead lines. Al-Mg-Si alloys are widely used in the production of long-distance overhead lines owing to their high strength-to-density ratio, good conductivity, and corrosion resistance. In the overhead line service, surface defects reduce their mechanical properties, and surface roughness greatly affects its fatigue properties. A single-strand conductor of 6101 aluminum alloy was employed to investigate the fatigue properties of the conductors with different roughness. The fatigue strength of the alloy wires decreased gradually with an increase in the surface roughness (maximum height of profile, Rz). As Rzincreased from 57.9 to 161.7 μm, the fatigue limit decreased by ~36.4%. The result indicates that an increase of Rz increases the theoretical stress concentration factor Kt, which facilitates the initiation of fatigue cracks, and the fatigue strength decreases accordingly. Furthermore, the surface roughness is equivalent to the size of the initial crack a0 = πLRz2 (L is the average value of the arerage width of profile element). A model suitable for predicting the fatigue life of conductors with different surface roughness was obtained.

Key wordsaluminum alloy conductor    surface roughness    stress concentration    fatigue life
收稿日期: 2021-01-28     
ZTFLH:  TB31  
基金资助:国家自然科学基金项目(51671050);国家自然科学基金项目(51971060)
作者简介: 宋文硕,男,1996年生,硕士生
图1  疲劳样品尺寸示意图
图2  6061铝合金导线样品显微组织的TEM像、STEM像及EDS元素分布图
图3  不同粗糙度6061铝合金导线样品表面形貌照片和表面轮廓曲线
SandpaperRa / μmRz / μml / μm
100#12.1161.7255
200#10.4148.9265
800#8.1104.0228
Nylon cloth5.857.9211
表1  样品的表面粗糙度数据
图4  不同表面粗糙度6061铝合金导线样品的应力幅-疲劳寿命(S-N)曲线
图5  不同表面粗糙度6061铝合金导线样品的断口SEM像
图6  不同粗糙度6061铝合金导线样品的应力幅-粗糙度关系和断口形貌
图7  不同表面粗糙度对应的疲劳断口扩展区面积
图8  不同粗糙度时缺口处的应力分布和等效缺口示意图
Rz / μmσa / MPaσmax / MPaKt
57.951.876.821.48
104.051.896.961.87
148.951.8116.702.25
161.751.8122.582.37
表2  模拟计算的理论应力集中系数
图9  不同Rz值对应的理论应力集中系数
图10  不同裂纹尺寸对应的疲劳极限范围
图11  计算结果和实验结果对比
1 Zhao Y S, Yao H, He W, et al. Comparison between high conductivity all aluminum conductor and traditional conductor [J]. Rural Electrific., 2016, (1): 13
1 赵永生, 姚 辉, 何 卫 等. 高导全铝导线与传统导线的比较 [J]. 农村电气化, 2016, (1): 13
2 Jia Y J, Yang Y J, Yuan H M. Application and development of aluminum alloy conductor in China [J]. Nonferrous Met. Process., 2017, 46(3): 9
2 贾艳军, 杨亚军, 袁红梅. 铝合金导线在我国的应用及发展 [J]. 有色金属加工, 2017, 46(3): 9
3 Karabay S. Influence of AlB2 compound on elimination of incoherent precipitation in artificial aging of wires drawn from redraw rod extruded from billets cast of alloy AA-6101 by vertical direct chill casting [J]. Mater. Des., 2008, 29: 1364
doi: 10.1016/j.matdes.2007.06.004
4 Karabay S. Modification of AA-6201 alloy for manufacturing of high conductivity and extra high conductivity wires with property of high tensile stress after artificial aging heat treatment for all-aluminium alloy conductors [J]. Mater. Des., 2006, 27: 821
doi: 10.1016/j.matdes.2005.06.005
5 Hu J, Zhou T G, Li Z S, et al. Production status and development prospects of Al-Mg-Si alloy conductor [J]. Light Alloy Fabric. Technol., 2018, 46(1): 5
5 胡 静, 周天国, 李振山 等. Al-Mg-Si合金导线的生产现状及其发展前景 [J]. 轻合金加工技术, 2018, 46(1): 5
6 Fadel A A, Rosa D, Murça L B, et al. Effect of high mean tensile stress on the fretting fatigue life of an Ibis steel reinforced aluminium conductor [J]. Int. J. Fatigue, 2012, 42: 24
doi: 10.1016/j.ijfatigue.2011.03.007
7 Kalombo R B, Martínez J M G, Ferreira J L A, et al. Comparative fatigue resistance of overhead conductors made of aluminium and aluminium alloy: Tests and analysis [J]. Procedia Eng., 2015, 133: 223
doi: 10.1016/j.proeng.2015.12.662
8 Kalombo R B, Reinke G, Miranda T B, et al. Experimental study of the fatigue performance of overhead pure aluminium cables [J]. Procedia Struct. Integ., 2019, 19: 688
9 Adriano V S R, Martínez J M G, Ferreira J L A, et al. The influence of the fatigue process zone size on fatigue life estimations performed on aluminum wires containing geometric discontinuities using the Theory of Critical Distances [J]. Theor. Appl. Fract. Mech., 2018, 97: 265
doi: 10.1016/j.tafmec.2018.09.002
10 Ås S K, Skallerud B, Tveiten B W, et al. Fatigue life prediction of machined components using finite element analysis of surface topography [J]. Int. J. Fatigue, 2005, 27: 1590
doi: 10.1016/j.ijfatigue.2005.07.031
11 McKelvey S A, Fatemi A. Surface finish effect on fatigue behavior of forged steel [J]. Int. J. Fatigue, 2012, 36: 130
doi: 10.1016/j.ijfatigue.2011.08.008
12 Novovic D, Dewes R C, Aspinwall D K, et al. The effect of machined topography and integrity on fatigue life [J]. Int. J. Mach. Tool. Manuf., 2004, 44: 125
doi: 10.1016/j.ijmachtools.2003.10.018
13 Maiya P S. Geometrical characterization of surface roughness and its application to fatigue crack initiation [J]. Mater. Sci. Eng., 1975, 21: 57
doi: 10.1016/0025-5416(75)90198-6
14 Suresh S, Ritchie R O. A geometric model for fatigue crack closure induced by fracture surface roughness [J]. Metall. Trans., 1982, 13A: 1627
15 Haddad M HEI, Smith K N, Topper T H. Fatigue crack propagation of short cracks [J]. J. Eng. Mater. Technol., 1979, 101: 42
doi: 10.1115/1.3443647
16 Xun L I, Guan C M, Zhao P. Influences of milling and grinding on machined surface roughness and fatigue behavior of GH4169 superalloy workpieces [J]. Chin. J. Aeronaut., 2018, 31: 1399
doi: 10.1016/j.cja.2017.07.013
17 Endo M, Yanase K. Effects of small defects, matrix structures and loading conditions on the fatigue strength of ductile cast irons [J]. Theor. Appl. Fract. Mech., 2014, 69: 34
doi: 10.1016/j.tafmec.2013.12.005
18 Wang J L, Zhang Y L, Zhao Q C, et al. The fatigue failure analysis and fatigue life prediction model of FV520B-I as a function of surface roughness in HCF regime [J]. J. Mater. Res., 2017, 32: 634
doi: 10.1557/jmr.2016.513
19 Newman Jr J C, Annigeri B S. Fatigue-life prediction method based on small-crack theory in an engine material [J]. J. Eng. Gas Turbines Power, 2012, 134: 032501
20 Lai J B, Huang H Z, Buising W. Effects of microstructure and surface roughness on the fatigue strength of high-strength steels [J]. Procedia Struct. Integ., 2016, 2: 1213
21 Murakami Y, Kodama S, Konuma S. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions [J]. Int. J. Fatigue, 1989, 11: 291
doi: 10.1016/0142-1123(89)90054-6
22 Andrews S, Sehitoglu H. A computer model for fatigue crack growth from rough surfaces [J]. Int. J. Fatigue, 2000, 22: 619
doi: 10.1016/S0142-1123(00)00018-9
23 Arola D, Williams C L. Estimating the fatigue stress concentration factor of machined surfaces [J]. Int. J. Fatigue, 2002, 24: 923
doi: 10.1016/S0142-1123(02)00012-9
24 Maiya P S, Busch D E. Effect of surface roughness on low-cycle fatigue behavior of type 304 stainless steel [J]. Metall. Trans., 1975, 6A: 1761
25 Yukitaka M, Masahiro E. Quantitative evaluation of fatigue strength of metals containing various small defects or cracks [J]. Eng. Fract. Mech., 1983, 17: 1
doi: 10.1016/0013-7944(83)90018-8
26 Newman Jr J C, Phillips E P, Swain M H. Fatigue-life prediction methodology using small-crack theory [J]. Int. J. Fatigue, 1999, 21: 109
doi: 10.1016/S0142-1123(98)00058-9
27 Ye Y L, Yang Z, Xu X X, et al. Effects of excess Mg and Si on the properties of 6101 conducting wire and its mechanism [J]. Rare Met. Mater. Eng., 2016, 45: 968
27 叶於龙, 杨 昭, 徐雪璇 等. 过量Mg、Si元素对6101电工导线性能影响及机制 [J]. 稀有金属材料与工程, 2016, 45: 968
28 Murakami Y. Effect of surface roughness on fatigue strength [A]. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions [M]. 2nd Ed., London: Academic Press, 2019: 1
29 Tanaka K, Mura T. A dislocation model for fatigue crack initiation [J]. J. Appl. Mech., 1981, 48: 97
doi: 10.1115/1.3157599
30 Krausz K, Krausz A S. On the physical meaning of the Paris equation [J]. Int. J. Fract., 1988, 36(2): 23
31 Suraratchai M, Limido J, Mabru C, et al. Modelling the influence of machined surface roughness on the fatigue life of aluminium alloy [J]. Int. J. Fatigue, 2008, 30: 2119
doi: 10.1016/j.ijfatigue.2008.06.003
32 Wang J L, Zhang Y L, Sun Q C, et al. Giga-fatigue life prediction of FV520B-I with surface roughness [J]. Mater. Des., 2016, 89: 1028
doi: 10.1016/j.matdes.2015.10.104
33 Zhao Y, Wang Q, Zhang W. Aluminum alloy fatigue life forecast based on linear elastic fracture mechanics [J]. Rallway Qual. Control, 2016, 44(8): 40
33 赵 扬, 王 强, 张 慰. 基于线弹性断裂力学的铝合金疲劳寿命预测 [J]. 铁道技术监督, 2016, 44(8): 40
34 Murakami Y. Effects of small defects and nonmetallic inclusions on the fatigue strength of metals [J]. Key Eng. Mater., 1991, 51-52: 37
doi: 10.4028/www.scientific.net/KEM.51-52.37
35 Liu Y M, Mahadevan S. Probabilistic fatigue life prediction using an equivalent initial flaw size distribution [J]. Int. J. Fatigue, 2009, 31: 476
doi: 10.1016/j.ijfatigue.2008.06.005
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[3] 孙飞龙, 耿克, 俞峰, 罗海文. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56(5): 693-703.
[4] 张哲峰,邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏. 孪生诱发塑性钢拉伸与疲劳性能及变形机制[J]. 金属学报, 2020, 56(4): 476-486.
[5] 吴正凯, 吴圣川, 张杰, 宋哲, 胡雅楠, 康国政, 张海鸥. 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为[J]. 金属学报, 2019, 55(7): 811-820.
[6] 郭军力, 文光华, 符姣姣, 唐萍, 侯自兵, 谷少鹏. 冷却速率对包晶钢凝固过程中包晶转变收缩的影响[J]. 金属学报, 2019, 55(10): 1311-1318.
[7] 张啸尘, 孟维迎, 邹德芳, 周鹏, 石怀涛. 预循环应力对高速列车关键结构用铝合金材料疲劳裂纹扩展行为的影响[J]. 金属学报, 2019, 55(10): 1243-1250.
[8] 宋哲, 吴圣川, 胡雅楠, 康国政, 付亚楠, 肖体乔. 冶金型气孔对熔化焊接7020铝合金疲劳行为的影响[J]. 金属学报, 2018, 54(8): 1131-1140.
[9] 张亚娟, 王海滨, 宋晓艳, 聂祚仁. SLM球形Ni粉的制备与打印工艺性能[J]. 金属学报, 2018, 54(12): 1833-1842.
[10] 朱莉娜,邓彩艳,王东坡,胡绳荪. 表面粗糙度对Ti-6Al-4V合金超高周疲劳性能的影响*[J]. 金属学报, 2016, 52(5): 583-591.
[11] 王彬,熊良银,刘实. 射频反应溅射制备MgO二次电子发射薄膜*[J]. 金属学报, 2016, 52(1): 10-16.
[12] 车欣, 梁兴奎, 陈丽丽, 陈立佳, 李锋. Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc)合金的显微组织及其低周疲劳行为*[J]. 金属学报, 2014, 50(9): 1046-1054.
[13] 熊缨 程利霞. 挤压AZ31B镁合金多轴疲劳寿命预测[J]. 金属学报, 2012, 48(12): 1446-1452.
[14] 张莹 张义文 张娜 刘明东 刘建涛. 粉末冶金高温合金FGH97的低周疲劳断裂特征[J]. 金属学报, 2010, 46(4): 444-450.
[15] 陈立佳 王鑫 智莹 徐颜武. 挤压变形Mg--x%Al--3%Ni合金的低周疲劳行为[J]. 金属学报, 2009, 45(7): 856-860.