Please wait a minute...
金属学报  2022, Vol. 58 Issue (11): 1497-1508    DOI: 10.11900/0412.1961.2022.00305
  研究论文 本期目录 | 过刊浏览 |
Al-AlN异构纳米复合材料的组织构型与热稳定性
聂金凤1(), 伍玉立1, 谢可伟2, 刘相法2()
1.南京理工大学 材料科学与工程学院 纳米异构材料中心 南京 210094
2.山东大学 材料液固结构演变与加工教育部重点实验 济南 250061
Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite
NIE Jinfeng1(), WU Yuli1, XIE Kewei2, LIU Xiangfa2()
1.Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2.Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
引用本文:

聂金凤, 伍玉立, 谢可伟, 刘相法. Al-AlN异构纳米复合材料的组织构型与热稳定性[J]. 金属学报, 2022, 58(11): 1497-1508.
Jinfeng NIE, Yuli WU, Kewei XIE, Xiangfa LIU. Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite[J]. Acta Metall Sin, 2022, 58(11): 1497-1508.

全文: PDF(4092 KB)   HTML
摘要: 

采用FESEM、TEM、EBSD、拉伸实验和热暴露实验等方法研究了Al-AlN异构复合材料的微观组织、力学性能和热稳定性,分析了复合材料的热稳定性及其稳定机理。结果表明:Al-AlN复合材料的组织为由粒子富集区和粒子贫乏区交替分布形成的异质片层结构,粒子富集区的基体晶粒为超细晶结构,粒子贫乏区为粗晶结构;该复合材料在500℃长达100 h的热暴露条件下表现出优异的热稳定性,并且其热稳定性和抗拉强度的综合性能组合显著优于传统的耐热铝合金;分析认为其主要的热稳定机理是高温下晶界上的AlN纳米颗粒钉扎晶界,抑制了晶界迁移和晶粒长大,从而使该Al-AlN异构纳米复合材料在表现出优异的强度-塑性匹配的同时,还表现出良好的热稳定性。此外,在热暴露实验的初期,还发现了异常强化和硬化现象,且热暴露温度越高其强度和硬度提高的幅度越大,这主要与热处理过程中发生了晶界驰豫强化有关。

关键词 铝基复合材料异构组织力学性能热稳定性    
Abstract

Efforts to develop high-strength and heat-resistant Al alloys have been ongoing to reduce the weight of automobiles and achieve transportation with low emissions. Traditional heat-resistant Al alloys are difficult to use at temperatures higher than 300oC because of the strength loss from precipitate coarsening behavior. This study examined the microstructure, mechanical properties, and thermal stability of a heterostructured Al nanocomposite reinforced by AlN nanoparticles using FESEM, TEM, EBSD, tensile test, and thermal exposure experiments. The heterogeneous lamellar structure of Al-AlN nanocomposite was composed of alternate distributed particle-rich and particle-free zones. Ultrafine Al grains formed in the particle-rich zone, whereas coarse Al grains formed in the particle-free zone. The mechanical tests of the Al-AlN nanocomposite showed no visible microhardness or loss of tensile strength after severe thermal exposure at 500oC for up to 100 h. The outstanding thermal stability and tensile strength combination were much better than the data in the literature. It is believed that the intergranular AlN nanoparticles pinned the Al grain boundaries and contributed to the superior thermal stability and strength. Furthermore, an abnormal increase in strength at the initial stage of the thermal exposure tests was revealed. A thermal exposure temperature resulted in a greater increase in strength and hardness, which was rationally interpreted in view of grain boundary relaxation strengthening.

Key wordsaluminum matrix composite    heterostructure    mechanical property    thermal stability
收稿日期: 2022-06-20     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(51731007);国家自然科学基金项目(52071179);国家自然科学基金项目(52271033);中央高校基本科研业务费项目(N30920021160);江苏省自然科学基金项目(BK20221493)
作者简介: 刘相法, xfliu@sdu.edu.cn,主要从事轻质金属材料凝固组织调控与强韧化及结构功能一体化研究
聂金凤, niejinfeng@njust.edu.cn,主要从事异构金属基复合材料组织设计与强韧化研究;
聂金凤,女,1985年生,副教授,博士
图1  挤压态Al-8.2AlN异构纳米复合材料微观组织的SEM像和EDS分析,以及AlN粒子的尺寸分布
图2  Al-AlN异构纳米复合材料纵截面的TEM像
图3  AlN及AlN/Al基体界面结构的HRTEM表征
图4  Al-AlN异构纳米复合材料500℃热暴露处理100 h前后基体晶粒尺寸的EBSD分析
图5  Al-AlN异构纳米复合材料500℃热暴露处理100 h前后再结晶分析图
图6  Al-AlN异构纳米复合材料热暴露前后的力学性能
StateYS / MPaUTS / MPaδ / %
As-received232 ± 13299 ± 2012.9 ± 1.71
500oC, 5 h290 ± 4350 ± 63.3 ± 0.70
500oC, 10 h315 ± 10390 ± 102.2 ± 0.46
500oC, 15 h259 ± 8323 ± 116.9 ± 0.88
500oC, 20 h248 ± 5312 ± 66.6 ± 0.17
500oC, 50 h236 ± 9298 ± 138.1 ± 1.79
500oC, 100 h251 ± 10321 ± 116.9 ± 0.75
表1  Al-AlN纳米复合材料500℃热暴露处理不同时间的拉伸力学性能
图7  Al-AlN异构纳米复合材料层状异质结构示意图及其热稳定温度和抗拉强度与其他铝合金[27~40]的对比图
1 Han T L, Liu E Z, Li J J, et al. A bottom-up strategy toward metal nano-particles modified graphene nanoplates for fabricating aluminum matrix composites and interface study [J]. J. Mater. Sci. Technol., 2020, 46: 21
doi: 10.1016/j.jmst.2019.09.045
2 Liu Y F, Wang F, Cao Y, et al. Unique defect evolution during the plastic deformation of a metal matrix composite [J]. Scr. Mater., 2019, 162: 316
doi: 10.1016/j.scriptamat.2018.11.038
3 Bi S, Li Z C, Sun H X, et al. Microstructure and mechanical properties of carbon nanotubes-reinforced 7055Al composites fabricated by high-energy ball milling and powder metallurgy processing [J]. Acta Metall. Sin., 2021, 57: 71
3 毕 胜, 李泽琛, 孙海霞 等. 高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能 [J]. 金属学报, 2021, 57: 71
4 Nie J F, Chen Y Y, Chen X, et al. Stiff, strong and ductile heterostructured aluminum composites reinforced with oriented nanoplatelets [J]. Scr. Mater., 2020, 189: 140
doi: 10.1016/j.scriptamat.2020.08.017
5 Tao R, Zhao Y T, Chen G, et al. Microstructure and properties of in-situ ZrB2 np/AA6111 composites synthesized under an electromagnetic field [J]. Acta Metall. Sin., 2019, 55: 160
5 陶 然, 赵玉涛, 陈 刚 等. 电磁场下原位合成纳米ZrB2 np/AA6111复合材料组织与性能研究 [J]. 金属学报, 2019, 55: 160
6 Qiu F, Tong H T, Shen P, et al. Overview: SiC/Al interface reaction and interface structure evolution mechanism [J]. Acta Metall. Sin., 2019, 55: 87
6 邱 丰, 佟昊天, 沈 平 等. 综述: SiC/Al界面反应与界面结构演变规律及机制 [J]. 金属学报, 2019, 55: 87
7 Ma X, Zhao Y F, Tian W J, et al. A novel Al matrix composite reinforced by nano-AlNp network [J]. Sci. Rep., 2016, 6: 34919
doi: 10.1038/srep34919 pmid: 27721417
8 Nie J F, Lu F H, Huang Z W, et al. Improving the high-temperature ductility of Al composites by tailoring the nanoparticle network [J]. Materialia, 2020, 9: 100523
doi: 10.1016/j.mtla.2019.100523
9 Zhang S Q, Zhang Y C, Chen M, et al. Characterization of mechanical properties of aluminum cast alloy at elevated temperature [J]. Appl. Math. Mech., 2018, 39: 967
doi: 10.1007/s10483-018-2349-8
10 Sun M, Zhuang J W, Deng H L, et al. Reviews on the study of aluminum alloys and aluminum matrix composites with high-temperature anti-creep behavior [J]. Mater. Rep., 2021, 35: 11137
10 孙 茗, 庄景巍, 邓海亮 等. 高温抗蠕变铝合金及铝基复合材料研究进展 [J]. 材料导报, 2021, 35: 11137
11 Sui Y D, Wang Q D, Wang G L, et al. Effects of Sr content on the microstructure and mechanical properties of cast Al-12Si-4Cu-2Ni-0.8Mg alloys [J]. J. Alloys Compd., 2015, 622: 572
doi: 10.1016/j.jallcom.2014.10.148
12 Gao Y H, Liu G, Sun J. Recent progress in high-temperature resistant aluminum-based alloys: Microstructural design and precipitation strategy [J]. Acta Metall. Sin., 2021, 57: 129
12 高一涵, 刘 刚, 孙 军. 耐热铝基合金研究进展: 微观组织设计与析出策略 [J]. 金属学报, 2021, 57: 129
13 Gao Y H, Guan P F, Su R, et al. Segregation-sandwiched stable interface suffocates nanoprecipitate coarsening to elevate creep resistance [J]. Mater. Res. Lett., 2020, 8: 446
doi: 10.1080/21663831.2020.1799447
14 Gong D, Jiang L T, Guan J T, et al. Stable second phase: The key to high-temperature creep performance of particle reinforced aluminum matrix composite [J]. Mater. Sci. Eng., 2020, A770: 138551
15 Tang F, Liao C P, Ahn B, et al. Thermal stability in nanostructured Al-5083/SiCp composites fabricated by cryomilling [J]. Powder Metall., 2007, 50: 307
doi: 10.1179/174329007X189630
16 Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112
17 Zhu Y T, Ameyama K, Anderson P M, et al. Heterostructured materials: Superior properties from hetero-zone interaction [J]. Mater. Res. Lett., 2020, 9: 1
doi: 10.1080/21663831.2020.1796836
18 Estrin Y, Beygelzimer Y, Kulagin R, et al. Architecturing materials at mesoscale: Some current trends [J]. Mater. Res. Lett., 2021, 9: 399
doi: 10.1080/21663831.2021.1961908
19 Geng R, Zhao Q L, Qiu F, et al. Simultaneously increased strength and ductility via the hierarchically heterogeneous structure of Al-Mg-Si alloys/nanocomposite [J]. Mater. Res. Lett., 2020, 8: 225
doi: 10.1080/21663831.2020.1744759
20 Nie J F, Liu Y F, Wang F, et al. Key roles of particles in grain refinement and material strengthening for an aluminum matrix composite [J]. Mater. Sci. Eng., 2021, A801: 140414
21 Zhang Z M, Fan G L, Tan Z Q, et al. Bioinspired multiscale Al2O3-rGO/Al laminated composites with superior mechanical properties [J]. Composites, 2021, 217B: 108916
22 Lii D F, Huang J L, Chang S T. The mechanical properties of AlN/Al composites manufactured by squeeze casting [J]. J. Eur. Ceram. Soc., 2002, 22: 253
doi: 10.1016/S0955-2219(01)00255-2
23 Zhang Z M, Fan G L, Tan Z Q, et al. Towards the strength-ductility synergy of Al2O3/Al composite through the design of roughened interface [J]. Composites, 2021, 224B: 109251
24 Chen Y Y, Nie J F, Wang F, et al. Revealing hetero-deformation induced (HDI) stress strengthening effect in laminated Al-(TiB2 + TiC)p/6063 composites prepared by accumulative roll bonding [J]. J. Alloys Compd., 2020, 815: 152285
doi: 10.1016/j.jallcom.2019.152285
25 Zhou W W, Zhou Z X, Fan Y C, et al. Significant strengthening effect in few-layered MXene-reinforced Al matrix composites [J]. Mater. Res. Lett., 2021, 9: 148
doi: 10.1080/21663831.2020.1861120
26 Brandenburg J E, Barrales-Mora L A, Molodov D A, et al. Motion of a grain boundary facet in aluminum [J]. Acta Mater., 2013, 61: 5518
doi: 10.1016/j.actamat.2013.05.043
27 Zhou W W, Cai B, Li W J, et al. Heat-resistant Al-0.2Sc-0.04Zr electrical conductor [J]. Mater. Sci. Eng., 2012, A552: 353
28 Zhao B B, Zhan Y Z, Tang H Q. High-temperature properties and microstructural evolution of Al-Cu-Mn-RE (La/Ce) alloy designed through thermodynamic calculation [J]. Mater. Sci. Eng., 2019, A758: 7
29 Wang W Y, Pan Q L, Lin G, et al. Internal friction and heat resistance of Al, Al-Ce, Al-Ce-Zr and Al-Ce-(Sc)-(Y) aluminum alloys with high strength and high electrical conductivity [J]. J. Mater. Res. Technol., 2021, 14: 1255
doi: 10.1016/j.jmrt.2021.07.054
30 Školáková A, Novák P, Mejzlíková L, et al. Structure and mechanical properties of Al-Cu-Fe-X alloys with excellent thermal stability [J]. Materials, 2017, 10: 1269
doi: 10.3390/ma10111269
31 Lai J, Zhang Z, Chen X G. The thermal stability of mechanical properties of Al-B4C composites alloyed with Sc and Zr at elevated temperatures [J]. Mater. Sci. Eng., 2012, A532: 462
32 Ding H, Xiao Y K, Bian Z Y, et al. Design, microstructure and thermal stability of a novel heat-resistant Al-Fe-Ni alloy manufactured by selective laser melting [J]. J. Alloys Compd., 2021, 885: 160949
doi: 10.1016/j.jallcom.2021.160949
33 Deng J W, Chen C, Liu X C, et al. A high-strength heat-resistant Al-5.7Ni eutectic alloy with spherical Al3Ni nano-particles by selective laser melting [J]. Scr. Mater., 2021, 203: 114034
doi: 10.1016/j.scriptamat.2021.114034
34 Chen J L, Liao H C, Wu Y N, et al. Contributions to high temperature strengthening from three types of heat-resistant phases formed during solidification, solution treatment and ageing treatment of Al-Cu-Mn-Ni alloys respectively [J]. Mater. Sci. Eng., 2020, A772: 138819
35 Balducci E, Ceschini L, Messieri S, et al. Thermal stability of the lightweight 2099 Al-Cu-Li alloy: Tensile tests and microstructural investigations after overaging [J]. Mater. Des., 2017, 119: 54
doi: 10.1016/j.matdes.2017.01.058
36 Pandey V, Chattopadhyay K, Srinivas N C S, et al. Thermal and microstructural stability of nanostructured surface of the aluminium alloy 7075 [J]. Mater. Charact., 2019, 151: 242
doi: 10.1016/j.matchar.2019.03.016
37 Liang S S, Wen S P, Wu X L, et al. The synergetic effect of Si and Sc on the thermal stability of the precipitates in AlCuMg alloy [J]. Mater. Sci. Eng., 2020, A783: 139319
38 Li M, Wang Y F, Gao H Y, et al. Thermally stable microstructure and mechanical properties of graphene reinforced aluminum matrix composites at elevated temperature [J]. J. Mater. Res. Technol., 2020, 9: 13230
doi: 10.1016/j.jmrt.2020.09.068
39 Cavojsky M, Balog M, Dvorak J, et al. Microstructure and properties of extruded rapidly solidified AlCr4.7Fe1.1Si0.3 (at.%) alloys [J]. Mater. Sci. Eng., 2012, A549: 233
40 Balog M, Hu T, Krizik P, et al. On the thermal stability of ultrafine-grained Al stabilized by in-situ amorphous Al2O3 network [J]. Mater. Sci. Eng., 2015, A648: 61
41 Nersisyan H H, Lee J H, Kim H Y, et al. Morphological diversity of AlN nano- and microstructures: Synthesis, growth orientations and theoretical modelling [J]. Int. Mater. Rev., 2020, 65: 323
doi: 10.1080/09506608.2019.1641651
42 Eivani A R, Valipour S, Ahmed H, et al. Effect of the size distribution of nanoscale dispersed particles on the zener drag pressure [J]. Metall. Mater. Trans., 2011, 42A: 1109
43 Xie Y M, Meng X C, Huang Y X, et al. Deformation-driven metallurgy of graphene nanoplatelets reinforced aluminum composite for the balance between strength and ductility [J]. Composites, 2019, 177B: 107413
44 Jang D, Atzmon M. Grain-boundary relaxation and its effect on plasticity in nanocrystalline Fe [J]. J. Appl. Phys., 2006, 99: 083504
45 Ranganathan S, Divakar R, Raghunathan V S. Interface structures in nanocrystalline materials [J]. Scr. Mater., 2001, 44: 1169
doi: 10.1016/S1359-6462(01)00678-9
46 Wu X L, Zhu Y T. Partial-dislocation-mediated processes in nanocrystalline Ni with nonequilibrium grain boundaries [J]. Appl. Phys. Lett., 2006, 89: 031922
47 Rupert T J, Trelewicz J R, Schuh C A. Grain boundary relaxation strengthening of nanocrystalline Ni-W alloys [J]. J. Mater. Res., 2012, 27: 1285
doi: 10.1557/jmr.2012.55
48 Gubicza J. Annealing-induced hardening in ultrafine-grained and nanocrystalline materials [J]. Adv. Eng. Mater., 2020, 22: 1900507
doi: 10.1002/adem.201900507
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 马宗义, 肖伯律, 张峻凡, 朱士泽, 王东. 航天装备牵引下的铝基复合材料研究进展与展望[J]. 金属学报, 2023, 59(4): 457-466.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.