|
|
Al-AlN异构纳米复合材料的组织构型与热稳定性 |
聂金凤1( ), 伍玉立1, 谢可伟2, 刘相法2( ) |
1.南京理工大学 材料科学与工程学院 纳米异构材料中心 南京 210094 2.山东大学 材料液固结构演变与加工教育部重点实验 济南 250061 |
|
Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite |
NIE Jinfeng1( ), WU Yuli1, XIE Kewei2, LIU Xiangfa2( ) |
1.Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China 2.Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China |
引用本文:
聂金凤, 伍玉立, 谢可伟, 刘相法. Al-AlN异构纳米复合材料的组织构型与热稳定性[J]. 金属学报, 2022, 58(11): 1497-1508.
Jinfeng NIE,
Yuli WU,
Kewei XIE,
Xiangfa LIU.
Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite[J]. Acta Metall Sin, 2022, 58(11): 1497-1508.
1 |
Han T L, Liu E Z, Li J J, et al. A bottom-up strategy toward metal nano-particles modified graphene nanoplates for fabricating aluminum matrix composites and interface study [J]. J. Mater. Sci. Technol., 2020, 46: 21
doi: 10.1016/j.jmst.2019.09.045
|
2 |
Liu Y F, Wang F, Cao Y, et al. Unique defect evolution during the plastic deformation of a metal matrix composite [J]. Scr. Mater., 2019, 162: 316
doi: 10.1016/j.scriptamat.2018.11.038
|
3 |
Bi S, Li Z C, Sun H X, et al. Microstructure and mechanical properties of carbon nanotubes-reinforced 7055Al composites fabricated by high-energy ball milling and powder metallurgy processing [J]. Acta Metall. Sin., 2021, 57: 71
|
3 |
毕 胜, 李泽琛, 孙海霞 等. 高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能 [J]. 金属学报, 2021, 57: 71
|
4 |
Nie J F, Chen Y Y, Chen X, et al. Stiff, strong and ductile heterostructured aluminum composites reinforced with oriented nanoplatelets [J]. Scr. Mater., 2020, 189: 140
doi: 10.1016/j.scriptamat.2020.08.017
|
5 |
Tao R, Zhao Y T, Chen G, et al. Microstructure and properties of in-situ ZrB2 np/AA6111 composites synthesized under an electromagnetic field [J]. Acta Metall. Sin., 2019, 55: 160
|
5 |
陶 然, 赵玉涛, 陈 刚 等. 电磁场下原位合成纳米ZrB2 np/AA6111复合材料组织与性能研究 [J]. 金属学报, 2019, 55: 160
|
6 |
Qiu F, Tong H T, Shen P, et al. Overview: SiC/Al interface reaction and interface structure evolution mechanism [J]. Acta Metall. Sin., 2019, 55: 87
|
6 |
邱 丰, 佟昊天, 沈 平 等. 综述: SiC/Al界面反应与界面结构演变规律及机制 [J]. 金属学报, 2019, 55: 87
|
7 |
Ma X, Zhao Y F, Tian W J, et al. A novel Al matrix composite reinforced by nano-AlNp network [J]. Sci. Rep., 2016, 6: 34919
doi: 10.1038/srep34919
pmid: 27721417
|
8 |
Nie J F, Lu F H, Huang Z W, et al. Improving the high-temperature ductility of Al composites by tailoring the nanoparticle network [J]. Materialia, 2020, 9: 100523
doi: 10.1016/j.mtla.2019.100523
|
9 |
Zhang S Q, Zhang Y C, Chen M, et al. Characterization of mechanical properties of aluminum cast alloy at elevated temperature [J]. Appl. Math. Mech., 2018, 39: 967
doi: 10.1007/s10483-018-2349-8
|
10 |
Sun M, Zhuang J W, Deng H L, et al. Reviews on the study of aluminum alloys and aluminum matrix composites with high-temperature anti-creep behavior [J]. Mater. Rep., 2021, 35: 11137
|
10 |
孙 茗, 庄景巍, 邓海亮 等. 高温抗蠕变铝合金及铝基复合材料研究进展 [J]. 材料导报, 2021, 35: 11137
|
11 |
Sui Y D, Wang Q D, Wang G L, et al. Effects of Sr content on the microstructure and mechanical properties of cast Al-12Si-4Cu-2Ni-0.8Mg alloys [J]. J. Alloys Compd., 2015, 622: 572
doi: 10.1016/j.jallcom.2014.10.148
|
12 |
Gao Y H, Liu G, Sun J. Recent progress in high-temperature resistant aluminum-based alloys: Microstructural design and precipitation strategy [J]. Acta Metall. Sin., 2021, 57: 129
|
12 |
高一涵, 刘 刚, 孙 军. 耐热铝基合金研究进展: 微观组织设计与析出策略 [J]. 金属学报, 2021, 57: 129
|
13 |
Gao Y H, Guan P F, Su R, et al. Segregation-sandwiched stable interface suffocates nanoprecipitate coarsening to elevate creep resistance [J]. Mater. Res. Lett., 2020, 8: 446
doi: 10.1080/21663831.2020.1799447
|
14 |
Gong D, Jiang L T, Guan J T, et al. Stable second phase: The key to high-temperature creep performance of particle reinforced aluminum matrix composite [J]. Mater. Sci. Eng., 2020, A770: 138551
|
15 |
Tang F, Liao C P, Ahn B, et al. Thermal stability in nanostructured Al-5083/SiCp composites fabricated by cryomilling [J]. Powder Metall., 2007, 50: 307
doi: 10.1179/174329007X189630
|
16 |
Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112
|
17 |
Zhu Y T, Ameyama K, Anderson P M, et al. Heterostructured materials: Superior properties from hetero-zone interaction [J]. Mater. Res. Lett., 2020, 9: 1
doi: 10.1080/21663831.2020.1796836
|
18 |
Estrin Y, Beygelzimer Y, Kulagin R, et al. Architecturing materials at mesoscale: Some current trends [J]. Mater. Res. Lett., 2021, 9: 399
doi: 10.1080/21663831.2021.1961908
|
19 |
Geng R, Zhao Q L, Qiu F, et al. Simultaneously increased strength and ductility via the hierarchically heterogeneous structure of Al-Mg-Si alloys/nanocomposite [J]. Mater. Res. Lett., 2020, 8: 225
doi: 10.1080/21663831.2020.1744759
|
20 |
Nie J F, Liu Y F, Wang F, et al. Key roles of particles in grain refinement and material strengthening for an aluminum matrix composite [J]. Mater. Sci. Eng., 2021, A801: 140414
|
21 |
Zhang Z M, Fan G L, Tan Z Q, et al. Bioinspired multiscale Al2O3-rGO/Al laminated composites with superior mechanical properties [J]. Composites, 2021, 217B: 108916
|
22 |
Lii D F, Huang J L, Chang S T. The mechanical properties of AlN/Al composites manufactured by squeeze casting [J]. J. Eur. Ceram. Soc., 2002, 22: 253
doi: 10.1016/S0955-2219(01)00255-2
|
23 |
Zhang Z M, Fan G L, Tan Z Q, et al. Towards the strength-ductility synergy of Al2O3/Al composite through the design of roughened interface [J]. Composites, 2021, 224B: 109251
|
24 |
Chen Y Y, Nie J F, Wang F, et al. Revealing hetero-deformation induced (HDI) stress strengthening effect in laminated Al-(TiB2 + TiC)p/6063 composites prepared by accumulative roll bonding [J]. J. Alloys Compd., 2020, 815: 152285
doi: 10.1016/j.jallcom.2019.152285
|
25 |
Zhou W W, Zhou Z X, Fan Y C, et al. Significant strengthening effect in few-layered MXene-reinforced Al matrix composites [J]. Mater. Res. Lett., 2021, 9: 148
doi: 10.1080/21663831.2020.1861120
|
26 |
Brandenburg J E, Barrales-Mora L A, Molodov D A, et al. Motion of a grain boundary facet in aluminum [J]. Acta Mater., 2013, 61: 5518
doi: 10.1016/j.actamat.2013.05.043
|
27 |
Zhou W W, Cai B, Li W J, et al. Heat-resistant Al-0.2Sc-0.04Zr electrical conductor [J]. Mater. Sci. Eng., 2012, A552: 353
|
28 |
Zhao B B, Zhan Y Z, Tang H Q. High-temperature properties and microstructural evolution of Al-Cu-Mn-RE (La/Ce) alloy designed through thermodynamic calculation [J]. Mater. Sci. Eng., 2019, A758: 7
|
29 |
Wang W Y, Pan Q L, Lin G, et al. Internal friction and heat resistance of Al, Al-Ce, Al-Ce-Zr and Al-Ce-(Sc)-(Y) aluminum alloys with high strength and high electrical conductivity [J]. J. Mater. Res. Technol., 2021, 14: 1255
doi: 10.1016/j.jmrt.2021.07.054
|
30 |
Školáková A, Novák P, Mejzlíková L, et al. Structure and mechanical properties of Al-Cu-Fe-X alloys with excellent thermal stability [J]. Materials, 2017, 10: 1269
doi: 10.3390/ma10111269
|
31 |
Lai J, Zhang Z, Chen X G. The thermal stability of mechanical properties of Al-B4C composites alloyed with Sc and Zr at elevated temperatures [J]. Mater. Sci. Eng., 2012, A532: 462
|
32 |
Ding H, Xiao Y K, Bian Z Y, et al. Design, microstructure and thermal stability of a novel heat-resistant Al-Fe-Ni alloy manufactured by selective laser melting [J]. J. Alloys Compd., 2021, 885: 160949
doi: 10.1016/j.jallcom.2021.160949
|
33 |
Deng J W, Chen C, Liu X C, et al. A high-strength heat-resistant Al-5.7Ni eutectic alloy with spherical Al3Ni nano-particles by selective laser melting [J]. Scr. Mater., 2021, 203: 114034
doi: 10.1016/j.scriptamat.2021.114034
|
34 |
Chen J L, Liao H C, Wu Y N, et al. Contributions to high temperature strengthening from three types of heat-resistant phases formed during solidification, solution treatment and ageing treatment of Al-Cu-Mn-Ni alloys respectively [J]. Mater. Sci. Eng., 2020, A772: 138819
|
35 |
Balducci E, Ceschini L, Messieri S, et al. Thermal stability of the lightweight 2099 Al-Cu-Li alloy: Tensile tests and microstructural investigations after overaging [J]. Mater. Des., 2017, 119: 54
doi: 10.1016/j.matdes.2017.01.058
|
36 |
Pandey V, Chattopadhyay K, Srinivas N C S, et al. Thermal and microstructural stability of nanostructured surface of the aluminium alloy 7075 [J]. Mater. Charact., 2019, 151: 242
doi: 10.1016/j.matchar.2019.03.016
|
37 |
Liang S S, Wen S P, Wu X L, et al. The synergetic effect of Si and Sc on the thermal stability of the precipitates in AlCuMg alloy [J]. Mater. Sci. Eng., 2020, A783: 139319
|
38 |
Li M, Wang Y F, Gao H Y, et al. Thermally stable microstructure and mechanical properties of graphene reinforced aluminum matrix composites at elevated temperature [J]. J. Mater. Res. Technol., 2020, 9: 13230
doi: 10.1016/j.jmrt.2020.09.068
|
39 |
Cavojsky M, Balog M, Dvorak J, et al. Microstructure and properties of extruded rapidly solidified AlCr4.7Fe1.1Si0.3 (at.%) alloys [J]. Mater. Sci. Eng., 2012, A549: 233
|
40 |
Balog M, Hu T, Krizik P, et al. On the thermal stability of ultrafine-grained Al stabilized by in-situ amorphous Al2O3 network [J]. Mater. Sci. Eng., 2015, A648: 61
|
41 |
Nersisyan H H, Lee J H, Kim H Y, et al. Morphological diversity of AlN nano- and microstructures: Synthesis, growth orientations and theoretical modelling [J]. Int. Mater. Rev., 2020, 65: 323
doi: 10.1080/09506608.2019.1641651
|
42 |
Eivani A R, Valipour S, Ahmed H, et al. Effect of the size distribution of nanoscale dispersed particles on the zener drag pressure [J]. Metall. Mater. Trans., 2011, 42A: 1109
|
43 |
Xie Y M, Meng X C, Huang Y X, et al. Deformation-driven metallurgy of graphene nanoplatelets reinforced aluminum composite for the balance between strength and ductility [J]. Composites, 2019, 177B: 107413
|
44 |
Jang D, Atzmon M. Grain-boundary relaxation and its effect on plasticity in nanocrystalline Fe [J]. J. Appl. Phys., 2006, 99: 083504
|
45 |
Ranganathan S, Divakar R, Raghunathan V S. Interface structures in nanocrystalline materials [J]. Scr. Mater., 2001, 44: 1169
doi: 10.1016/S1359-6462(01)00678-9
|
46 |
Wu X L, Zhu Y T. Partial-dislocation-mediated processes in nanocrystalline Ni with nonequilibrium grain boundaries [J]. Appl. Phys. Lett., 2006, 89: 031922
|
47 |
Rupert T J, Trelewicz J R, Schuh C A. Grain boundary relaxation strengthening of nanocrystalline Ni-W alloys [J]. J. Mater. Res., 2012, 27: 1285
doi: 10.1557/jmr.2012.55
|
48 |
Gubicza J. Annealing-induced hardening in ultrafine-grained and nanocrystalline materials [J]. Adv. Eng. Mater., 2020, 22: 1900507
doi: 10.1002/adem.201900507
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|