|
|
高熵合金中的局域化学有序 |
丁俊( ), 王章洁( ) |
西安交通大学 材料科学与工程学院 金属材料强度国家重点实验室 西安 710049 |
|
Local Chemical Order in High-Entropy Alloys |
DING Jun( ), WANG Zhangjie( ) |
State Key Laboratory of Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China |
引用本文:
丁俊, 王章洁. 高熵合金中的局域化学有序[J]. 金属学报, 2021, 57(4): 413-424.
Jun DING,
Zhangjie WANG.
Local Chemical Order in High-Entropy Alloys[J]. Acta Metall Sin, 2021, 57(4): 413-424.
1 |
Klement W, Willens R H, Duwez P. Non-crystalline structure in solidified gold-silicon alloys [J]. Nature, 1960, 187: 869
|
2 |
Laughlin D E, Hono K. Physical Metallurgy [M]. 5th Ed., Singapore: Elsevier, 2014: 305
|
3 |
Johnson W L. Bulk glass-forming metallic alloys: Science and technology [J]. MRS Bull., 1999, 24: 42
|
4 |
Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater., 2000, 48: 279
|
5 |
Wang W H, Dong C, Shek C H. Bulk metallic glasses [J]. Mater. Sci. Eng., 2004, R44: 45
|
6 |
Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
|
7 |
Pickering E J, Jones N G. High-entropy alloys: A critical assessment of their founding principles and future prospects [J]. Int. Mater. Rev., 2016, 61: 183
|
8 |
Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
|
9 |
George E P, Raabe D, Ritchie R O. High-entropy alloys [J]. Nat. Rev. Mater., 2019, 4: 515
|
10 |
George E P, Curtin W A, Tasan C C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms [J]. Acta Mater., 2020, 188: 435
|
11 |
Li Z Z, Zhao S T, Ritchie R O, et al. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys [J]. Prog. Mater. Sci., 2019, 102: 296
|
12 |
Miracle D B. High entropy alloys as a bold step forward in alloy development [J]. Nat. Commun., 2019, 10: 1805
|
13 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
|
14 |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
|
15 |
Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects [J]. Mater. Today, 2016, 19: 349
|
16 |
Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
|
17 |
Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
|
18 |
Laplanche G, Kostka A, Horst O M, et al. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy [J]. Acta Mater., 2016, 118: 152
|
19 |
Laplanche G, Kostka A, Reinhart C, et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi [J]. Acta Mater., 2017, 128: 292
|
20 |
Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
|
21 |
Huang H L, Wu Y, He J Y, et al. Phase‐transformation ductilization of brittle high-entropy alloys via metastability engineering [J]. Adv. Mater., 2017, 29: 1701678
|
22 |
Otto F, Dlouhy A, Pradeep K G, et al. Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures [J]. Acta Mater., 2016, 112: 40
|
23 |
Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
|
24 |
Senkov O N, Miracle D B, Chaput K J, et al. Development and exploration of refractory high entropy alloys—A review [J]. J. Mater. Res., 2018, 33: 3092
|
25 |
Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys [J]. Intermetallics, 2010, 18: 1758
|
26 |
Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
|
27 |
Maresca F, Curtin W A. Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900 K [J]. Acta Mater., 2020, 182: 235
|
28 |
Zhang Y W, Stocks G M, Jin K, et al. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys [J]. Nat. Commun., 2015, 6: 8736
|
29 |
Lu C Y, Niu L L, Chen N J, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys [J]. Nat. Commun., 2016, 7: 13564
|
30 |
Granberg F, Nordlund K, Ullah M W, et al. Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys [J]. Phys. Rev. Lett., 2016, 116: 135504
|
31 |
El-Atwani O, Li N, Li M, et al. Outstanding radiation resistance of tungsten-based high-entropy alloys [J]. Sci. Adv., 2019, 5: eaav2002
|
32 |
Niu C N, Larosa C R, Miao J S, et al. Magnetically-driven phase transformation strengthening in high entropy alloys [J]. Nat. Commun., 2018, 9: 1363
|
33 |
Song H Q, Tian F Y, Hu Q M, et al. Local lattice distortion in high-entropy alloys [J]. Phys. Rev. Mater., 2017, 1: 023404
|
34 |
Zhang Z J, Mao M M, Wang J W, et al. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi [J]. Nat. Commun., 2015, 6: 10143
|
35 |
Zhang Z J, Sheng H W, Wang Z J, et al. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy [J]. Nat. Commun., 2017, 8: 14390
|
36 |
Zhao S J, Stocks G M, Zhang Y M, et al. Stacking fault energies of face-centered cubic concentrated solid solution alloys [J]. Acta Mater., 2017, 134: 334
|
37 |
Nöhring W G, Curtin W A. Dislocation cross-slip in fcc solid solution alloys [J]. Acta Mater., 2017, 128: 135
|
38 |
Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
|
39 |
Huang S, Huang H, Li W, et al. Twinning in metastable high-entropy alloys [J]. Nat. Commun., 2018, 9: 2381
|
40 |
Zhang F, Wu Y, Lou H B, et al. Polymorphism in a high-entropy alloy [J]. Nat. Commun., 2017, 8: 15687
|
41 |
Troparevsky M C, Morris J R, Kent P R C, et al. Criteria for predicting the formation of single-phase high-entropy alloys [J]. Phys. Rev., 2015, 5X: 011041
|
42 |
Senkov O N, Miller J D, Miracle D B, et al. Accelerated exploration of multi-principal element alloys with solid solution phases [J]. Nat. Commun., 2015, 6: 6529
|
43 |
Ding J, Yu Q, Asta M, et al. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys [J]. Proc. Natl. Acad. Sci. USA, 2018, 115: 8919
|
44 |
Li Q J, Sheng H, Ma E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways [J]. Nat. Commun., 2019, 10: 3563
|
45 |
Tamm A, Abloo A, Klintenberg M, et al. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys [J]. Acta Mater., 2015, 99: 307
|
46 |
Zhang F X, Zhao S J, Jin K, et al. Local structure and short-range order in a NiCoCr solid solution alloy [J]. Phys. Rev. Lett., 2017, 118: 205501
|
47 |
Ding Q Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574: 223
|
48 |
Zhang R P, Zhao S T, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy [J]. Nature, 2020, 581: 283
|
49 |
Wu Y, Zhang F, Yuan X Y, et al. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62: 214
|
50 |
Kostiuchenko T, Ruban A V, Neugebauer J, et al. Short-range order in face-centered cubic VCoNi alloys [J]. Phys. Rev. Mater., 2020, 4: 113802
|
51 |
Fernández-Caballero A, Wróbel J S, Mummery P M, et al. Short-range order in high entropy alloys: Theoretical formulation and application to Mo-Nb-Ta-V-W system [J]. J. Phase Equilib. Diffus., 2017, 38: 391
|
52 |
Feng R, Liaw P K, Gao M C, et al. First-principles prediction of high-entropy-alloy stability [J]. npj Comput. Mater., 2017, 3: 50
|
53 |
Santodonato L J, Zhang Y, Feygenson M, et al. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy [J]. Nat. Commun., 2015, 6: 5964
|
54 |
Fantin A, Lepore G O, Manzoni A M, et al. Short-range chemical order and local lattice distortion in a compositionally complex alloy [J]. Acta Mater., 2020, 193: 329
|
55 |
Yin B L, Yoshida S, Tsuji N, et al. Yield strength and misfit volumes of NiCoCr and implications for short-range-order [J]. Nat. Commun., 2020, 11: 2507
|
56 |
Niu C, Zaddach A J, Oni A A, et al. Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo [J]. Appl. Phys. Lett., 2015, 106: 161906
|
57 |
Maiti S, Steurer W. Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy [J]. Acta Mater., 2016, 106: 87
|
58 |
Seol J B, Bae J W, Kim J G, et al. Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications [J]. Acta Mater., 2020, 194: 366
|
59 |
Smith L T W, Su Y Q, Xu S Z, et al. The effect of local chemical ordering on Frank-Read source activation in a refractory multi-principal element alloy [J]. Int. J. Plast., 2020, 134: 102850
|
60 |
Ma E. Unusual dislocation behavior in high-entropy alloys [J]. Scr. Mater., 2020, 181: 127
|
61 |
Li X G, Chen C, Zheng H, et al. Complex strengthening mechanisms in the NbMoTaW multi-principal element alloy [J]. npj Comput. Mater., 2020, 6: 70
|
62 |
Yin S, Ding J, Asta M, et al. Ab initio modeling of the energy landscape for screw dislocations in body-centered cubic high-entropy alloys [J]. npj Comput. Mater., 2020, 6: 110
|
63 |
Antillon E, Woodward C, Rao S I, et al. Chemical short range order strengthening in a model FCC high entropy alloy [J]. Acta Mater., 2020, 190: 29
|
64 |
Jian W R, Xie Z C, Xu S Z, et al. Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi [J]. Acta Mater., 2020, 199: 352
|
65 |
Wu Z K, Tian F Y. Effect of ordering on stacking fault energy of VNiFeCo high entropy alloys [J]. Mater. Today Commun., 2020, 25: 101336
|
66 |
Nöhring W G, Curtin W A. Design using randomness: A new dimension for metallurgy [J]. Scr. Mater., 2020, 187: 210
|
67 |
Ma E, Wu X L. Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy [J]. Nat. Commun., 2019, 10: 5623
|
68 |
Basu I, De Hosson J T M. Strengthening mechanisms in high entropy alloys: Fundamental issues [J]. Scr. Mater., 2020, 187: 148
|
69 |
Chen B, Li S Z, Zong H X, et al. Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 16199
|
70 |
Cao F H, Wang Y J, Dai L H. Novel atomic-scale mechanism of incipient plasticity in a chemically complex CrCoNi medium-entropy alloy associated with inhomogeneity in local chemical environment [J]. Acta Mater., 2020, 194: 283
|
71 |
Sun X, Lu S, Xie R W, et al. Can experiment determine the stacking fault energy of metastable alloys? [J] Mater. Des., 2021, 199: 109396
|
72 |
Zhu C, Lu Z P, Nieh T G. Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy [J]. Acta Mater., 2013, 61: 2993
|
73 |
Zhao Y K, Park J M, Jang J I, et al. Bimodality of incipient plastic strength in face-centered cubic high-entropy alloys [J]. Acta Mater., 2021, 202: 124
|
74 |
Varvenne C, Luque A, Curtin W A. Theory of strengthening in fcc high entropy alloys [J]. Acta Mater., 2016, 118: 164
|
75 |
Reinhard L, Moss S C. Recent studies of short-range order in alloys: The Cowley theory revisited [J]. Ultramicroscopy, 1993, 52: 223
|
76 |
Zhao Y K, Wang X T, Cao T Q, et al. Effect of grain size on the strain rate sensitivity of CoCrFeNi high-entropy alloy [J]. Mater. Sci. Eng., 2020, A782: 139281
|
77 |
Hong S I, Moon J, Hong S K, et al. Thermally activated deformation and the rate controlling mechanism in CoCrFeMnNi high entropy alloy [J]. Mater. Sci. Eng., 2017, A682: 569
|
78 |
Zhou D S, Chen Z H, Ehara K, et al. Effects of annealing on hardness, yield strength and dislocation structure in single crystals of the equiatomic Cr-Mn-Fe-Co-Ni high entropy alloy [J]. Scr. Mater., 2021, 191: 173
|
79 |
Ketov S V, Sun Y H, Nachum S, et al. Rejuvenation of metallic glasses by non-affine thermal strain [J]. Nature, 2015, 524: 200
|
80 |
Pan J, Ivanov Y P, Zhou W H, et al. Strain-hardening and suppression of shear-banding in rejuvenated metallic glass [J]. Nature, 2020, 578: 559
|
81 |
Huang S, Holmström E, Eriksson O, et al. Mapping the magnetic transition temperatures for medium- and high-entropy alloys [J]. Intermetallics, 2018, 95: 80
|
82 |
Yao Y G, Huang Z N, Xie P F, et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles [J]. Science, 2018, 359: 1489
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|