Please wait a minute...
金属学报  2021, Vol. 57 Issue (4): 393-402    DOI: 10.11900/0412.1961.2020.00433
  综述 本期目录 | 过刊浏览 |
高熵合金中的元素分布规律及其作用
余倩(), 陈雨洁, 方研
浙江大学 材料科学与工程学院 硅材料国家重点实验室 电子显微镜中心 杭州 310027
Heterogeneity in Chemical Distribution and Its Impact in High-Entropy Alloys
YU Qian(), CHEN Yujie, FANG Yan
Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
引用本文:

余倩, 陈雨洁, 方研. 高熵合金中的元素分布规律及其作用[J]. 金属学报, 2021, 57(4): 393-402.
Qian YU, Yujie CHEN, Yan FANG. Heterogeneity in Chemical Distribution and Its Impact in High-Entropy Alloys[J]. Acta Metall Sin, 2021, 57(4): 393-402.

全文: PDF(1739 KB)   HTML
摘要: 

高熵合金作为一类多主元的复杂合金,其与传统合金相比可能表现出更好的力学性能和不同变形机制。而这些现象所对应的高熵合金与传统合金在原子结构特点上的本质区别一直存在争议。大量研究表明,由于高熵合金中各组成元素的原子特性不同,其可能普遍存在原子尺度上的元素分布不均匀性,这使得材料的结构性能关系用经典的固溶强化等理论并不能被完全理解。本文以面心立方、体心立方及双相高熵合金为分类,总结了高熵合金中与元素分布相关的研究,从浓度波和短程有序这两个方面出发,分别展开讨论;并拓展到其对材料位错行为和力学性能的影响;最后,对未来高熵合金中元素分布规律的探索进行了展望。

关键词 高熵合金浓度波动短程有序变形机制与力学性能    
Abstract

High-entropy alloys (HEAs) or multiprincipal-element alloys have exceptional properties those may be better than the properties of conventional alloys and exhibit different deformation mechanisms. However, some issues pertaining to what may make HEAs distinct from the conventional alloys remain to be resolved. Many studies have found that heterogeneity in chemical distribution due to unique atomic features may be common in HEAs. Therefore, the relationship between the structure and properties cannot be explained completely by the traditional solid solution strengthening mechanism. In this short review, classified by their crystal structures, such as face-centered-cubic, body-centered-cubic, and dual-phase, studies on element distribution in HEAs, including concentration wave and short-range order, are summarized. The influence of heterogeneity in chemical distribution on dislocation behaviors and mechanical properties is described. Further, a brief perspective of the research directions for element distribution is proposed.

Key wordshigh entropy alloy    concentration fluctuation    short-range order    deformation mechanism and mechanical property
收稿日期: 2020-10-30     
ZTFLH:  TG131  
基金资助:国家自然科学基金面上项目(51671168、51871197)
图1  传统固溶体模型与高熵合金中的元素分布模型(a) random solid solution(b) two kinds of inhomogeneity of element distribution: concentration wave and short-range order(c) dislocation slip energy barrier model in random solid solution(d) dislocation slip energy barrier in HEAs
图2  利用原子尺度的能量色散X射线谱进行元素分布表征
图3  不同合金中的位错形态(a) Ni-3W (b) CrCoNi (c) CrCoNi-3W (d) Cr20Mn10Fe30Co30Ni10
图4  bcc类高熵合金中的元素分布均匀性及其位错行为[47~50](a) dislocation structures in HfNbTaTiZr HEAs[47](b) dislocation structures in Ti38V15Nb23Hf24[48](c) short-range clustering structure in HfNbTaZr after annealing[49](d) ordered oxygen complexes regions in TiZrHfNb with 2% oxygen[50]
1 Reed R C, Tao T, Warnken N. Alloys-by-design: Application to nickel-based single crystal superalloys [J]. Acta Mater., 2009, 57: 5898
2 Labusch R. A statistical theory of solid solution hardening [J]. Phys. Stat. Sol., 1970, 41B: 659
3 Nabarro F R N. The theory of solution hardening [J]. Philos. Mag., 1977, 35: 613
4 Lee C, Song G, Gao M C, et al. Lattice distortion in a strong and ductile refractory high-entropy alloy [J]. Acta Mater., 2018, 160: 158
5 Tian X, Li H, Zhang Y S. Effect of Al content on stacking fault energy in austenitic Fe-Mn-Al-C alloys [J]. J. Mater. Sci., 2008, 43: 6214
6 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
7 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
8 Wu Z, Bei H, Pharr G M, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures [J]. Acta Mater., 2014, 81: 428
9 Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
10 Zhang W R, Liaw P K, Zhang Y. Science and technology in high-entropy alloys [J]. Sci. China Mater., 2018, 61: 2
11 Wu Y D, Cai Y H, Wang T, et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties [J]. Mater. Lett., 2014, 130: 277
12 Couzinié J P, Dirras G, Perrière L, et al. Microstructure of a near-equimolar refractory high-entropy alloy [J]. Mater. Lett., 2014, 126: 285
13 Senkov O N, Miracle D B, Chaput K J, et al. Development and exploration of refractory high entropy alloys—A review [J]. J. Mater. Res., 2018, 33: 3092
14 Yeh J W. Recent progress in high-entropy alloys [J]. Ann. Chim. Sci. Mat., 2006, 31: 633
15 Huang P K, Yeh J W, Shun T T, et al. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating [J]. Adv. Eng. Mater., 2004, 6: 74
16 Grässel O, Frommeyer G, Derder C, et al. Phase transformations and mechanical properties of Fe-Mn-Si-Al TRIP-steels [J]. J. Phys. IV Coll., 1997, 7: C5-383
17 Otto F, Yang Y, Bei H, et al. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys [J]. Acta Mater., 2013, 61: 2628
18 Yeh J W, Lin S J, Chin T S, et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements [J]. Metall. Mater. Trans., 2004, 35A: 2533
19 Ding J, Yu Q, Asta M, et al. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys [J]. Proc Natl Acad Sci U S A, 2018, 115: 8919
20 Zhang F X, Zhao S J, Jin K, et al. Local structure and short-range order in a NiCoCr solid solution alloy [J]. Phys. Rev. Lett., 2017, 118: 205501
21 Ding Q Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574: 223
22 Zhang R P, Zhao S T, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy [J]. Nature, 2020, 581: 283
23 Luan H W, Shao Y, Li J F, et al. Phase stabilities of high entropy alloys [J]. Scr. Mater., 2020, 179: 40
24 Gyorffy B L, Stocks G M. Concentration waves and Fermi surfaces in random metallic alloys [J]. Phys. Rev. Lett., 1983, 50: 374
25 Wu Y, Zhang F, Yuan X Y, et al. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62: 214
26 Laplanche G, Kostka A, Reinhart C, et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi [J]. Acta Mater., 2017, 128: 292
27 Gali A, George E P. Tensile properties of high- and medium-entropy alloys [J]. Intermetallics, 2013, 39: 74
28 Laurent-Brocq M, Akhatova A, Perrière L, et al. Insights into the phase diagram of the CrMnFeCoNi high entropy alloy [J]. Acta Mater., 2015, 88: 355
29 Otto F, Hanold N L, George E P. Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries [J]. Intermetallics, 2014, 54: 39
30 Otto F, Dlouhý A, Pradeep K G, et al. Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures [J]. Acta Mater., 2016, 112: 40
31 Zhang Z J, Sheng H W, Wang Z J, et al. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy [J]. Nat. Commun., 2017, 8: 14390
32 Chen Y J, Fang Y, Fu X Q, et al. Origin of strong solid solution strengthening in the CrCoNi-W medium entropy alloy [J]. J. Mater. Sci. Technol., 2021, 73: 101
33 Ma E, Wu X L. Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy [J]. Nat. Commun., 2019, 10: 5623
34 Chen B, Li S Z, Zong H X, et al. Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 16199
35 Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys [J]. Acta Mater., 2011, 59: 6308
36 Fantin A, Lepore G O, Manzoni A M, et al. Short-range chemical order and local lattice distortion in a compositionally complex alloy [J]. Acta Mater., 2020, 193: 329
37 Ming K S, Bi X F, Wang J. Segregation of Mo atoms into stacking faults in CrFeCoNiMo alloy [J]. Philos. Mag., 2019, 99: 1014
38 Seol J B, Bae J W, Kim J G, et al. Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications [J]. Acta Mater., 2020, 194: 366
39 Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys [J]. Intermetallics, 2010, 18: 1758
40 Yin S, Ding J, Asta M, et al. Ab initio modeling of the energy landscape for screw dislocations in body-centered cubic high-entropy alloys [J]. npj Comput. Mater., 2020, 6: 110
41 Rao S I, Varvenne C, Woodward C, et al. Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy [J]. Acta Mater., 2017, 125: 311
42 Xu S Z, Hwang E, Jian W R, et al. Atomistic calculations of the generalized stacking fault energies in two refractory multi-principal element alloys [J]. Intermetallics, 2020, 124: 106844
43 Wang F L, Balbus G H, Xu S Z, et al. Multiplicity of dislocation pathways in a refractory multiprincipal element alloy [J]. Science, 2020, 370: 95
44 Smith L T W, Su Y Q, Xu S Z, et al. The effect of local chemical ordering on Frank-Read source activation in a refractory multi-principal element alloy [J]. Int. J. Plast., 2020, 134: 102850
45 Maresca F, Curtin W A. Theory of screw dislocation strengthening in random BCC alloys from dilute to “High-Entropy” alloys [J]. Acta Mater., 2020, 182: 144
46 Senkov O N, Scott J M, Senkova S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy [J]. J. Alloys Compd., 2011, 509: 6043
47 Lilensten L, Couzinié J P, Perrière L, et al. Study of a bcc multi-principal element alloy: Tensile and simple shear properties and underlying deformation mechanisms [J]. Acta Mater., 2018, 142: 131
48 Wei S L, Kim S J, Kang J Y, et al. Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility [J]. Nat. Mater., 2020, 19: 1175
49 Maiti S, Steurer W. Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy [J]. Acta Mater., 2016, 106: 87
50 Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
51 Whitfield T E, Pickering E J, Talbot C E, et al. Observation of a refractory metal matrix containing Zr-Ti-rich precipitates in a Mo0.5NbTa0.5TiZr high entropy alloy [J]. Scr. Mater., 2020, 180: 71
52 Senkov O N, Senkova S V, Woodward C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys [J]. Acta Mater., 2014, 68: 214
53 Jensen J K, Welk B A, Williams R E A, et al. Characterization of the microstructure of the compositionally complex alloy Al1Mo0.5Nb1Ta0.5Ti1Zr1 [J]. Scr. Mater., 2016, 121: 1
54 Senkov O N, Jensen J K, Pilchak A L, et al. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr [J]. Mater. Des., 2018, 139: 498
55 Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
56 Li Z M, Tasan C C, Pradeep K G, et al. A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior [J]. Acta Mater., 2017, 131: 323
57 Chen S J, Oh H S, Gludovatz B, et al. Real-time observations of TRIP-induced ultrahigh strain hardening in a dual-phase CrMnFeCoNi high-entropy alloy [J]. Nat. Commun., 2020, 11: 826
58 Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
59 He J Y, Wang H, Huang H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Mater., 2016, 102: 187
60 He F, Chen D, Han B, et al. Design of D022 superlattice with superior strengthening effect in high entropy alloys [J]. Acta Mater., 2019, 167: 275
61 Liu W H, Lu Z P, He J Y, et al. Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases [J]. Acta Mater., 2016, 116: 332
62 Gao N, Lu D H, Zhao Y Y, et al. Strengthening of a CrMnFeCoNi high-entropy alloy by carbide precipitation [J]. J. Alloys Compd., 2019, 792: 1028
63 Cheng H, Wang H Y, Xie Y C, et al. Controllable fabrication of a carbide-containing FeCoCrNiMn high-entropy alloy: Microstructure and mechanical properties [J]. Mater. Sci. Technol., 2017, 33: 2032
64 Stepanov N D, Yurchenko N Y, Tikhonovsky M A, et al. Effect of carbon content and annealing on structure and hardness of the CoCrFeNiMn-based high entropy alloys [J]. J. Alloys Compd., 2016, 687: 59
65 Wang Z W, Baker I, Cai Z H, et al. The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys [J]. Acta Mater., 2016, 120: 228
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[3] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[4] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[5] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[6] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[7] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[8] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[9] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.
[10] 安子冰, 毛圣成, 张泽, 韩晓东. 高熵合金跨尺度异构强韧化及其力学性能研究进展[J]. 金属学报, 2022, 58(11): 1441-1458.
[11] 张金钰, 屈启蒙, 王亚强, 吴凯, 刘刚, 孙军. 金属/高熵合金纳米多层膜的力学性能及其辐照效应研究进展[J]. 金属学报, 2022, 58(11): 1371-1384.
[12] 崔洪芝, 姜迪. 高熵合金涂层研究进展[J]. 金属学报, 2022, 58(1): 17-27.
[13] 孙士杰, 田艳中, 张哲峰. 析出强化Fe53Mn15Ni15Cr10Al4Ti2C1 高熵合金强韧化机制[J]. 金属学报, 2022, 58(1): 54-66.
[14] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[15] 丁俊, 王章洁. 高熵合金中的局域化学有序[J]. 金属学报, 2021, 57(4): 413-424.