|
|
高熵合金中的元素分布规律及其作用 |
余倩( ), 陈雨洁, 方研 |
浙江大学 材料科学与工程学院 硅材料国家重点实验室 电子显微镜中心 杭州 310027 |
|
Heterogeneity in Chemical Distribution and Its Impact in High-Entropy Alloys |
YU Qian( ), CHEN Yujie, FANG Yan |
Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China |
引用本文:
余倩, 陈雨洁, 方研. 高熵合金中的元素分布规律及其作用[J]. 金属学报, 2021, 57(4): 393-402.
Qian YU,
Yujie CHEN,
Yan FANG.
Heterogeneity in Chemical Distribution and Its Impact in High-Entropy Alloys[J]. Acta Metall Sin, 2021, 57(4): 393-402.
1 |
Reed R C, Tao T, Warnken N. Alloys-by-design: Application to nickel-based single crystal superalloys [J]. Acta Mater., 2009, 57: 5898
|
2 |
Labusch R. A statistical theory of solid solution hardening [J]. Phys. Stat. Sol., 1970, 41B: 659
|
3 |
Nabarro F R N. The theory of solution hardening [J]. Philos. Mag., 1977, 35: 613
|
4 |
Lee C, Song G, Gao M C, et al. Lattice distortion in a strong and ductile refractory high-entropy alloy [J]. Acta Mater., 2018, 160: 158
|
5 |
Tian X, Li H, Zhang Y S. Effect of Al content on stacking fault energy in austenitic Fe-Mn-Al-C alloys [J]. J. Mater. Sci., 2008, 43: 6214
|
6 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
|
7 |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
|
8 |
Wu Z, Bei H, Pharr G M, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures [J]. Acta Mater., 2014, 81: 428
|
9 |
Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
|
10 |
Zhang W R, Liaw P K, Zhang Y. Science and technology in high-entropy alloys [J]. Sci. China Mater., 2018, 61: 2
|
11 |
Wu Y D, Cai Y H, Wang T, et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties [J]. Mater. Lett., 2014, 130: 277
|
12 |
Couzinié J P, Dirras G, Perrière L, et al. Microstructure of a near-equimolar refractory high-entropy alloy [J]. Mater. Lett., 2014, 126: 285
|
13 |
Senkov O N, Miracle D B, Chaput K J, et al. Development and exploration of refractory high entropy alloys—A review [J]. J. Mater. Res., 2018, 33: 3092
|
14 |
Yeh J W. Recent progress in high-entropy alloys [J]. Ann. Chim. Sci. Mat., 2006, 31: 633
|
15 |
Huang P K, Yeh J W, Shun T T, et al. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating [J]. Adv. Eng. Mater., 2004, 6: 74
|
16 |
Grässel O, Frommeyer G, Derder C, et al. Phase transformations and mechanical properties of Fe-Mn-Si-Al TRIP-steels [J]. J. Phys. IV Coll., 1997, 7: C5-383
|
17 |
Otto F, Yang Y, Bei H, et al. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys [J]. Acta Mater., 2013, 61: 2628
|
18 |
Yeh J W, Lin S J, Chin T S, et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements [J]. Metall. Mater. Trans., 2004, 35A: 2533
|
19 |
Ding J, Yu Q, Asta M, et al. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys [J]. Proc Natl Acad Sci U S A, 2018, 115: 8919
|
20 |
Zhang F X, Zhao S J, Jin K, et al. Local structure and short-range order in a NiCoCr solid solution alloy [J]. Phys. Rev. Lett., 2017, 118: 205501
|
21 |
Ding Q Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574: 223
|
22 |
Zhang R P, Zhao S T, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy [J]. Nature, 2020, 581: 283
|
23 |
Luan H W, Shao Y, Li J F, et al. Phase stabilities of high entropy alloys [J]. Scr. Mater., 2020, 179: 40
|
24 |
Gyorffy B L, Stocks G M. Concentration waves and Fermi surfaces in random metallic alloys [J]. Phys. Rev. Lett., 1983, 50: 374
|
25 |
Wu Y, Zhang F, Yuan X Y, et al. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62: 214
|
26 |
Laplanche G, Kostka A, Reinhart C, et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi [J]. Acta Mater., 2017, 128: 292
|
27 |
Gali A, George E P. Tensile properties of high- and medium-entropy alloys [J]. Intermetallics, 2013, 39: 74
|
28 |
Laurent-Brocq M, Akhatova A, Perrière L, et al. Insights into the phase diagram of the CrMnFeCoNi high entropy alloy [J]. Acta Mater., 2015, 88: 355
|
29 |
Otto F, Hanold N L, George E P. Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries [J]. Intermetallics, 2014, 54: 39
|
30 |
Otto F, Dlouhý A, Pradeep K G, et al. Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures [J]. Acta Mater., 2016, 112: 40
|
31 |
Zhang Z J, Sheng H W, Wang Z J, et al. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy [J]. Nat. Commun., 2017, 8: 14390
|
32 |
Chen Y J, Fang Y, Fu X Q, et al. Origin of strong solid solution strengthening in the CrCoNi-W medium entropy alloy [J]. J. Mater. Sci. Technol., 2021, 73: 101
|
33 |
Ma E, Wu X L. Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy [J]. Nat. Commun., 2019, 10: 5623
|
34 |
Chen B, Li S Z, Zong H X, et al. Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 16199
|
35 |
Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys [J]. Acta Mater., 2011, 59: 6308
|
36 |
Fantin A, Lepore G O, Manzoni A M, et al. Short-range chemical order and local lattice distortion in a compositionally complex alloy [J]. Acta Mater., 2020, 193: 329
|
37 |
Ming K S, Bi X F, Wang J. Segregation of Mo atoms into stacking faults in CrFeCoNiMo alloy [J]. Philos. Mag., 2019, 99: 1014
|
38 |
Seol J B, Bae J W, Kim J G, et al. Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications [J]. Acta Mater., 2020, 194: 366
|
39 |
Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys [J]. Intermetallics, 2010, 18: 1758
|
40 |
Yin S, Ding J, Asta M, et al. Ab initio modeling of the energy landscape for screw dislocations in body-centered cubic high-entropy alloys [J]. npj Comput. Mater., 2020, 6: 110
|
41 |
Rao S I, Varvenne C, Woodward C, et al. Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy [J]. Acta Mater., 2017, 125: 311
|
42 |
Xu S Z, Hwang E, Jian W R, et al. Atomistic calculations of the generalized stacking fault energies in two refractory multi-principal element alloys [J]. Intermetallics, 2020, 124: 106844
|
43 |
Wang F L, Balbus G H, Xu S Z, et al. Multiplicity of dislocation pathways in a refractory multiprincipal element alloy [J]. Science, 2020, 370: 95
|
44 |
Smith L T W, Su Y Q, Xu S Z, et al. The effect of local chemical ordering on Frank-Read source activation in a refractory multi-principal element alloy [J]. Int. J. Plast., 2020, 134: 102850
|
45 |
Maresca F, Curtin W A. Theory of screw dislocation strengthening in random BCC alloys from dilute to “High-Entropy” alloys [J]. Acta Mater., 2020, 182: 144
|
46 |
Senkov O N, Scott J M, Senkova S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy [J]. J. Alloys Compd., 2011, 509: 6043
|
47 |
Lilensten L, Couzinié J P, Perrière L, et al. Study of a bcc multi-principal element alloy: Tensile and simple shear properties and underlying deformation mechanisms [J]. Acta Mater., 2018, 142: 131
|
48 |
Wei S L, Kim S J, Kang J Y, et al. Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility [J]. Nat. Mater., 2020, 19: 1175
|
49 |
Maiti S, Steurer W. Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy [J]. Acta Mater., 2016, 106: 87
|
50 |
Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
|
51 |
Whitfield T E, Pickering E J, Talbot C E, et al. Observation of a refractory metal matrix containing Zr-Ti-rich precipitates in a Mo0.5NbTa0.5TiZr high entropy alloy [J]. Scr. Mater., 2020, 180: 71
|
52 |
Senkov O N, Senkova S V, Woodward C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys [J]. Acta Mater., 2014, 68: 214
|
53 |
Jensen J K, Welk B A, Williams R E A, et al. Characterization of the microstructure of the compositionally complex alloy Al1Mo0.5Nb1Ta0.5Ti1Zr1 [J]. Scr. Mater., 2016, 121: 1
|
54 |
Senkov O N, Jensen J K, Pilchak A L, et al. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr [J]. Mater. Des., 2018, 139: 498
|
55 |
Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
|
56 |
Li Z M, Tasan C C, Pradeep K G, et al. A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior [J]. Acta Mater., 2017, 131: 323
|
57 |
Chen S J, Oh H S, Gludovatz B, et al. Real-time observations of TRIP-induced ultrahigh strain hardening in a dual-phase CrMnFeCoNi high-entropy alloy [J]. Nat. Commun., 2020, 11: 826
|
58 |
Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
|
59 |
He J Y, Wang H, Huang H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Mater., 2016, 102: 187
|
60 |
He F, Chen D, Han B, et al. Design of D022 superlattice with superior strengthening effect in high entropy alloys [J]. Acta Mater., 2019, 167: 275
|
61 |
Liu W H, Lu Z P, He J Y, et al. Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases [J]. Acta Mater., 2016, 116: 332
|
62 |
Gao N, Lu D H, Zhao Y Y, et al. Strengthening of a CrMnFeCoNi high-entropy alloy by carbide precipitation [J]. J. Alloys Compd., 2019, 792: 1028
|
63 |
Cheng H, Wang H Y, Xie Y C, et al. Controllable fabrication of a carbide-containing FeCoCrNiMn high-entropy alloy: Microstructure and mechanical properties [J]. Mater. Sci. Technol., 2017, 33: 2032
|
64 |
Stepanov N D, Yurchenko N Y, Tikhonovsky M A, et al. Effect of carbon content and annealing on structure and hardness of the CoCrFeNiMn-based high entropy alloys [J]. J. Alloys Compd., 2016, 687: 59
|
65 |
Wang Z W, Baker I, Cai Z H, et al. The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys [J]. Acta Mater., 2016, 120: 228
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|