| 
					引用本文:
						|  |  
    					|  |  
    					| 轴向超声振动对搅拌摩擦焊过程中金属流动行为的影响 |  
						| 何长树1,2(  ), 郄默繁1,2, 张志强1,2, 赵骧1,2 |  
					| 1.东北大学 材料科学与工程学院 沈阳 110819 2.东北大学 材料各向异性与织构教育部重点实验室 沈阳 110819
 |  
						|  |  
    					| Effect of Axial Ultrasonic Vibration on Metal Flow Behavior During Friction Stir Welding |  
						| HE Changshu1,2(  ), QIE Mofan1,2, ZHANG Zhiqiang1,2, ZHAO Xiang1,2 |  
						| 1.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 2.Key Laboratory for Anisotropy and Texture of Materials, Northeastern University, Shenyang 110819, China
 |  
								何长树, 郄默繁, 张志强, 赵骧. 轴向超声振动对搅拌摩擦焊过程中金属流动行为的影响[J]. 金属学报, 2021, 57(12): 1614-1626.	
																												Changshu HE,
																								Mofan QIE,
																								Zhiqiang ZHANG,
																												Xiang ZHAO. 
				Effect of Axial Ultrasonic Vibration on Metal Flow Behavior During Friction Stir Welding[J]. Acta Metall Sin, 2021, 57(12): 1614-1626.
 
					
						| 
								
									|  
          
          
            
             
			              
            
									            
									                
																																															
																| 1 | Padhy G K, Wu C S, Gao S. Friction stir based welding and processing technologies-processes, parameters, microstructures and applications: A review [J]. J. Mater. Sci. Technol., 2018, 34: 1 |  
																| 2 | Mao Y Q, Ke L M, Chen Y H, et al. Inhomogeneity of microstructure and mechanical properties in the nugget of friction stir welded thick 7075 aluminum alloy joints [J]. J. Mater. Sci. Technol., 2018, 34: 228 |  
																| 3 | Wang D, Dong C L, Xiao B L, et al. Effect of welding parameters on microstructure and mechanical properties of friction stir welded AlCuLi alloy joints [J]. Acta Metall. Sin., 2012, 48: 1109 |  
																| 3 | 王 东, 董春林, 肖伯律等. 焊接参数对AlCuLi合金搅拌摩擦焊接头微观结构和力学性能的影响 [J]. 金属学报, 2012, 48: 1109 |  
																| 4 | Dialami N, Cervera M, Chiumenti M. Defect formation and material flow in friction stir welding [J]. Eur. J. Mech., 2020, 80A: 103912 |  
																| 5 | Emamian S S, Awang M, Yusof F, et al. Improving the friction stir welding tool life for joining the metal matrix composites [J]. Int. J. Adv. Manuf. Technol., 2020, 106: 3217 |  
																| 6 | Çam G. Friction stir welded structural materials: Beyond Al-alloys [J]. Int. Mater. Rev., 2011, 56: 1 |  
																| 7 | Campanelli S L, Casalino G, Casavola C, et al. Analysis and comparison of friction stir welding and laser assisted friction stir welding of aluminum alloy [J]. Materials, 2013, 6: 5923 |  
																| 8 | Bang H S, Bang H S, Jeon G H, et al. Gas tungsten arc welding assisted hybrid friction stir welding of dissimilar materials Al6061-T6 aluminum alloy and STS304 stainless steel [J]. Mater. Des., 2012, 37: 48 |  
																| 9 | Padhy G K, Wu C S, Gao S. Auxiliary energy assisted friction stir welding—Status review [J]. Sci. Technol. Weld. Joining, 2015, 20: 631 |  
																| 10 | Shi L, Wu C S, Padhy G K, et al. Numerical simulation of ultrasonic field and its acoustoplastic influence on friction stir welding [J]. Mater. Des., 2016, 104: 102 |  
																| 11 | Siddiq A, El Sayed T. Ultrasonic-assisted manufacturing processes: Variational model and numerical simulations [J]. Ultrasonics, 2012, 52: 521 |  
																| 12 | Barbosa J, Puga H. Ultrasonic melt treatment of light alloys [J]. Int. J. Met., 2019, 13: 180 |  
																| 13 | Liu X C, Wu C S. Material flow in ultrasonic vibration enhanced friction stir welding [J]. J. Mater. Process. Technol., 2015, 225: 32 |  
																| 14 | Hu Y Y, Liu H J, Fujii H, et al. Effect of ultrasound on microstructure evolution of friction stir welded aluminum alloys [J]. J. Manuf. Processes, 2020, 56: 362 |  
																| 15 | Zhang Z Q, He C S, Zhao S, et al. Microstructure and mechanical properties of the stirred zone of ultrasonic assisted friction stir welded joint of 7075-T6 alloy [J]. J. Northeastern Univ. (Nat. Sci.), 2020, 41: 1708 |  
																| 15 | 张志强, 何长树, 赵 夙等. 7075-T6合金超声辅助搅拌摩擦焊接头搅拌区组织与力学性能 [J]. 东北大学学报(自然科学版), 2020, 41: 1708 |  
																| 16 | Ding W, Wu C S. Effect of ultrasonic vibration exerted at the tool on friction stir welding process and joint quality [J]. J. Manuf. Processes, 2019, 42: 192 |  
																| 17 | Zeng X H, Xue P, Wang D, et al. Material flow and void defect formation in friction stir welding of aluminium alloys [J]. Sci. Technol. Weld. Joining, 2018, 23: 677 |  
																| 18 | Su H, Wu C S, Bachmann M, et al. Numerical modeling for the effect of pin profiles on thermal and material flow characteristics in friction stir welding [J]. Mater. Des., 2015, 77: 114 |  
																| 19 | Liu F J, Fu L, Zhang W Y, et al. Interface structure and mechanical properties of friction stir welding joint of 2099-T83/2060-T8 dissimilar Al-Li alloys [J]. Acta Metall. Sin., 2015, 51: 281 |  
																| 19 | 刘奋军, 傅 莉, 张纹源等. 2099-T83/2060-T8异质Al-Li合金搅拌摩擦焊搭接界面结构与力学性能 [J]. 金属学报, 2015, 51: 281 |  
																| 20 | Liu X C, Wu C S, Padhy G K. Characterization of plastic deformation and material flow in ultrasonic vibration enhanced friction stir welding [J]. Scr. Mater., 2015, 102: 95 |  
																| 21 | Zhong Y B, Wu C S, Padhy G K. Effect of ultrasonic vibration on welding load, temperature and material flow in friction stir welding [J]. J. Mater. Process. Technol., 2017, 239: 273 |  
																| 22 | Zhang Z Q, He C S, Li Y, et al. Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminum alloy joints [J]. J. Mater. Sci. Technol., 2020, 43: 1 |  
																| 23 | Tao Y, Ni D R, Xiao B L, et al. Origin of unusual fracture in stirred zone for friction stir welded 2198-T8 Al-Li alloy joints [J]. Mater. Sci. Eng., 2017, A693: 1 |  
																| 24 | Ke L M, Pan J L, Xing L, et al. Sucking-extruding theory for the material flow in friction stir welds [J]. J. Mech. Eng., 2009, 45(4): 89 |  
																| 24 | 柯黎明, 潘际銮, 邢 丽等. 搅拌摩擦焊焊缝金属塑性流动的抽吸-挤压理论 [J]. 机械工程学报, 2009, 45(4): 89 |  
																| 25 | Ji L. Fundamental research on meso friction stir joining of aeronautical aluminum alloy [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 |  
																| 25 | 吉 玲. 航空铝合金微细搅拌摩擦连接技术基础研究 [D]. 南京: 南京航空航天大学, 2018 |  
																| 26 | Kang J, Luan G H, Fu R D. Microstructures and mechanical properties of banded textures of friction stir welded 7075-T6 aluminum alloy [J]. Acta Metall. Sin., 2011, 47: 224 |  
																| 26 | 康 举, 栾国红, 付瑞东. 7075-T6铝合金搅拌摩擦焊焊缝表面带状纹理的组织与性能 [J]. 金属学报, 2011, 47: 224 |  
																| 27 | Schneider J A, Nunes Jr A C. Characterization of plastic flow and resulting microtextures in a friction stir weld [J]. Metall. Mater. Trans., 2004, 35B: 777 |  
																| 28 | Doude H R, Schneider J A, Nunes Jr A C. Influence of the tool shoulder contact conditions on the material flow during friction stir welding [J]. Metall. Mater. Trans., 2014, 45A: 4411 |  
																| 29 | Chen G Q, Li H, Wang G Q, et al. Effects of pin thread on the in-process material flow behavior during friction stir welding: A computational fluid dynamics study [J]. Int. J. Mach. Tools Manuf., 2018, 124: 12 |  
																| 30 | Sun Z, Wu C S. A numerical model of pin thread effect on material flow and heat generation in shear layer during friction stir welding [J]. J. Manuf. Processes, 2018, 36: 10 |  
																| 31 | Chowdhury S M, Chen D L, Bhole S D, et al. Tensile properties of a friction stir welded magnesium alloy: Effect of pin tool thread orientation and weld pitch [J]. Mater. Sci. Eng., 2010, A527: 6064 |  
																| 32 | Yang K Y, Peng B, Yuan Z Q, et al. Influence of ultrasonic energy on weld formation of friction stir welding of aluminum alloy [J]. J. Beijing Univ. Aeronaut. Astronaut., 2020, 46: 1437 |  
																| 32 | 杨坤玉, 彭 彬, 袁朝桥等. 超声能对铝合金搅拌摩擦焊焊缝成型的影响 [J]. 北京航空航天大学学报, 2020, 46: 1437 |  
																| 33 | Wang X W, Wang C J, Liu Y, et al. An energy based modeling for the acoustic softening effect on the Hall-Petch behavior of pure titanium in ultrasonic vibration assisted micro-tension [J]. Int. J. Plast., 2021, 136: 102879 |  
																| 34 | Yao Z H, Kim G Y, Wang Z H, et al. Acoustic softening and residual hardening in aluminum: Modeling and experiments [J]. Int. J. Plast., 2012, 39: 75 |  
																| 35 | Shi L. Numerical analysis of thermal processes and plastic material flow in ultrasonic vibration enhanced friction stir welding [D]. Jinan: Shandong University, 2016 |  
																| 35 | 石 磊. 超声振动强化搅拌摩擦焊接热过程及材料流动的数值分析 [D]. 济南: 山东大学, 2016 |  
																| 36 | Gungor B, Kaluc E, Taban E, et al. Mechanical, fatigue and microstructural properties of friction stir welded 5083-H111 and 6082-T651 aluminum alloys [J]. Mater. Des., 2014, 56: 84 |  
																| 37 | Wu M X, Wu C S, Gao S. Effect of ultrasonic vibration on fatigue performance of AA 2024-T3 friction stir weld joints [J]. J. Manuf. Processes, 2017, 29: 85 |  
																| 38 | Zhang Z Q, He C S, Li Y, et al. Fatigue behaviour of 7N01-T4 aluminium alloy welded by ultrasonic-assisted friction stir welding [J]. Materials, 2020, 13: 4582 |  
             
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |