|
|
选区激光熔化成形TiN/Inconel 718复合材料的组织和力学性能 |
王文权, 王苏煜, 陈飞, 张新戈( ), 徐宇欣 |
吉林大学 材料科学与工程学院 汽车材料教育部重点实验室 长春 130022 |
|
Microstructure and Mechanical Properties of TiN/Inconel 718 Composites Fabricated by Selective Laser Melting |
WANG Wenquan, WANG Suyu, CHEN Fei, ZHANG Xinge( ), XU Yuxin |
Key Laboratory of Automotive Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130022, China |
引用本文:
王文权, 王苏煜, 陈飞, 张新戈, 徐宇欣. 选区激光熔化成形TiN/Inconel 718复合材料的组织和力学性能[J]. 金属学报, 2021, 57(8): 1017-1026.
Wenquan WANG,
Suyu WANG,
Fei CHEN,
Xinge ZHANG,
Yuxin XU.
Microstructure and Mechanical Properties of TiN/Inconel 718 Composites Fabricated by Selective Laser Melting[J]. Acta Metall Sin, 2021, 57(8): 1017-1026.
1 |
Abe F, Osakada K, Shiomi M, et al. The manufacturing of hard tools from metallic powders by selective laser melting [J]. J. Mater. Process. Technol., 2001, 111: 210
|
2 |
Delcuse L, Bahi S, Gunputh U, et al. Effect of powder bed fusion laser melting process parameters, build orientation and strut thickness on porosity, accuracy and tensile properties of an auxetic structure in IN718 alloy [J]. Addit. Manuf., 2020, 36: 101339
|
3 |
Yang Y, Li X, Khonsari M M, et al. On enhancing surface wear resistance via rotating grains during selective laser melting [J]. Addit. Manuf., 2020, 36: 101583
|
4 |
Trosch T, Strößner J, Völkl R, et al. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting [J]. Mater. Lett., 2016, 164: 428
|
5 |
Zhang D Y, Feng Z, Wang C J, et al. Comparison of microstructures and mechanical properties of Inconel 718 alloy processed by selective laser melting and casting [J]. Mater. Sci. Eng., 2018, A724: 357
|
6 |
Huang W, Yang J J, Yang H H, et al. Heat treatment of Inconel 718 produced by selective laser melting: Microstructure and mechanical properties [J]. Mater. Sci. Eng., 2019, A750: 98
|
7 |
Moussaoui K, Rubio W, Mousseigne M, et al. Effects of selective laser melting additive manufacturing parameters of Inconel 718 on porosity, microstructure and mechanical properties [J]. Mater. Sci. Eng., 2018, A735: 182
|
8 |
Hu Y L, Lin X, Zhang S Y, et al. Effect of solution heat treatment on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by laser solid forming [J]. J. Alloys Compd., 2018, 767: 330
|
9 |
Yao X L, Moon S K, Lee B Y, et al. Effects of heat treatment on microstructures and tensile properties of IN718/TiC nanocomposite fabricated by selective laser melting [J]. Int. J. Precis. Eng. Manuf., 2017, 18: 1693
|
10 |
Xu F J, Lv Y H, Liu Y X, et al. Microstructural evolution and mechanical properties of Inconel 625 alloy during pulsed plasma arc deposition process [J]. J. Mater. Sci. Technol., 2013, 29: 480
|
11 |
Cao G H, Sun T Y, Wang C H, et al. Investigations of γ', γ'' and δ precipitates in heat-treated Inconel 718 alloy fabricated by selective laser melting [J]. Mater. Charact., 2018, 136: 398
|
12 |
Nguyen Q B, Luu D N, Nai S M L, et al. The role of powder layer thickness on the quality of SLM printed parts [J]. Arch. Civ. Mech. Eng., 2018, 18: 948
|
13 |
Nadammal N, Cabeza S, Mishurova T, et al. Effect of hatch length on the development of microstructure, texture and residual stresses in selective laser melted superalloy Inconel 718 [J]. Mater. Des., 2017, 134: 139
|
14 |
Schneider J, Lund B, Fullen M. Effect of heat treatment variations on the mechanical properties of Inconel 718 selective laser melted specimens [J]. Addit. Manuf., 2018, 21: 248
|
15 |
Chen L, Sun Y Z, Li L, et al. Effect of heat treatment on the microstructure and high temperature oxidation behavior of TiC/Inconel 625 nanocomposites fabricated by selective laser melting [J]. Corros. Sci., 2020, 169: 168606
|
16 |
Nguyen Q B, Zhu Z, Chua B W, et al. Development of WC-Inconel composites using selective laser melting [J]. Arch. Civ. Mech. Eng., 2018, 18: 1410
|
17 |
Zhang B C, Bi G J, Nai S, et al. Microhardness and microstructure evolution of TiB2 reinforced Inconel 625/TiB2 composite produced by selective laser melting [J]. Opt. Laser Technol., 2016, 80: 186
|
18 |
Tanprayoon D, Srisawadi S, Sato Y, et al. Microstructure and hardness response of novel 316L stainless steel composite with TiN addition fabricated by SLM [J]. Opt. Laser Technol., 2020, 129: 106238
|
19 |
Chen Q C, Wu G Z, Li D S, et al. Understanding the unusual friction behavior of TiN films in vacuum [J]. Tribol. Int., 2019, 137: 379
|
20 |
Zhang D Y, Niu W, Cao X Y, et al. Effect of standard heat treatment on the microstructure and mechanical properties of selective laser melting manufactured Inconel 718 superalloy [J]. Mater. Sci. Eng., 2015, A644: 32
|
21 |
Blackwell P L. The mechanical and microstructural characteristics of laser-deposited IN718 [J]. J. Mater. Process. Technol., 2005, 170: 240
|
22 |
Zhao Y, Guan K, Yang Z Q, et al. The effect of subsequent heat treatment on the evolution behavior of second phase particles and mechanical properties of the Inconel 718 superalloy manufactured by selective laser melting [J]. Mater. Sci. Eng., 2020, A794: 139931
|
23 |
Liu F C, Lin X, Yang G L, et al. Microstructure and residual stress of laser rapid formed Inconel 718 nickel-base superalloy [J]. Opt. Laser Technol., 2011, 43: 208
|
24 |
Xiao H, Li S M, Xiao W J, et al. Effects of laser modes on Nb segregation and Laves phase formation during laser additive manufacturing of nickel-based superalloy [J]. Mater. Lett., 2017, 188: 260
|
25 |
Cao Y, Bai P C, Liu F, et al. Effect of the solution temperature on the precipitates and grain evolution of IN718 fabricated by laser additive manufacturing [J]. Materials (Basel), 2020, 13: 340
|
26 |
Desvallees Y, Bouzidi M, Bois F, et al. Delta phase in Inconel 718: Mechanical properties and forging process requirements [A].Superalloys 718, 625, 706 and Various Dericatives [C]. Warrendale, PA: TMS, 1994: 281
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|