Please wait a minute...
金属学报  2021, Vol. 57 Issue (8): 1017-1026    DOI: 10.11900/0412.1961.2020.00485
  研究论文 本期目录 | 过刊浏览 |
选区激光熔化成形TiN/Inconel 718复合材料的组织和力学性能
王文权, 王苏煜, 陈飞, 张新戈(), 徐宇欣
吉林大学 材料科学与工程学院 汽车材料教育部重点实验室 长春 130022
Microstructure and Mechanical Properties of TiN/Inconel 718 Composites Fabricated by Selective Laser Melting
WANG Wenquan, WANG Suyu, CHEN Fei, ZHANG Xinge(), XU Yuxin
Key Laboratory of Automotive Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130022, China
引用本文:

王文权, 王苏煜, 陈飞, 张新戈, 徐宇欣. 选区激光熔化成形TiN/Inconel 718复合材料的组织和力学性能[J]. 金属学报, 2021, 57(8): 1017-1026.
Wenquan WANG, Suyu WANG, Fei CHEN, Xinge ZHANG, Yuxin XU. Microstructure and Mechanical Properties of TiN/Inconel 718 Composites Fabricated by Selective Laser Melting[J]. Acta Metall Sin, 2021, 57(8): 1017-1026.

全文: PDF(27060 KB)   HTML
摘要: 

采用选区激光熔化(selective laser melting,SLM)工艺制备了TiN/Inconel 718 (IN718)复合材料,利用OM、SEM、EDS、EBSD以及XRD等手段研究了SLM成形态和不同热处理条件下TiN/IN718复合材料的微观组织和力学性能。结果表明:SLM成形态TiN/IN718复合材料中TiN颗粒与基体之间紧密结合,并形成了约为0.3 μm厚的过渡层,与IN718合金相比,TiN/IN718复合材料的显微硬度和拉伸强度均有明显改善(分别提高39 HV0.2和74 MPa)。双时效(DA)和固溶时效(SA)热处理的TiN/IN718复合材料中,强化相的析出和TiN颗粒的存在导致裂纹萌生源增多,从而造成强度没有得到明显提升。均匀化 + 固溶时效(HSA)热处理后材料发生了完全再结晶,晶粒内部析出了超细球状的γ'/γ''强化相,晶界处和晶粒内部TiN颗粒周围的针状δ相含量增加。因此,经过HSA处理后材料的抗拉强度有显著提升,达到1430 MPa (提高了410 MPa)。

关键词 选区激光熔化Inconel 718TiN颗粒复合材料热处理    
Abstract

The Inconel 718 alloy has become a remarkable candidate material for aerospace jet engines, turbine blades, and some other elevated temperature components owing to its superior tensile strength, anticorrosion and thermal performance. Moreover, TiN ceramic particles with high hardness and chemical stability have been realized to significantly improve the mechanical properties of the alloy matrix at a low content. Accordingly, in this work, the Inconel 718 (IN718) alloy and TiN/IN718 composite were fabricated by the optimized selective laser melting (SLM) process. Further, the microstructures and mechanical properties of the IN718 alloy and TiN/IN718 composite under heat treatments were investigated, respectively. The results show that the TiN particles were highly combined with the matrix, and a transition layer with 0.3 μm was formed in the SLM-fabricated TiN/IN718 specimens. Additionally, the microhardness and tensile strength were significantly improved compared with IN718 alloy (39 HV0.2, 74 MPa, respectively). After the double aging and solution aging (SA) treatments, the number of crack initiation sources was increased owing to the precipitation of the δ phase, which deteriorated the tensile strength of the TiN/IN718 composite. After the homogenization + SA (HSA) treatment, the composite was completely recrystallized, and an appropriate amount of needle- and plate-like δ phases precipitated at the grain boundaries. Hence, the TiN/IN718 composite after the HSA treatment exhibited optimally comprehensive mechanical properties.

Key wordsselective laser melting    Inconel 718    TiN particle    composite    heat treatment
收稿日期: 2020-12-02     
ZTFLH:  TG249  
基金资助:吉林省科技发展计划项目(20200401034GX);吉林省发改委产业技术研究与开发专项项目(2020C029-1);吉林大学中央高校基本科研业务费项目(45120031B004)
作者简介: 王文权,男,1971年生,教授,博士
图1  选区激光熔化(SLM)扫描策略示意图
图2  IN718合金粉末和TiN颗粒的SEM像
图3  SLM成形IN718合金和TiN/IN718复合材料的OM像
图4  SLM成形IN718合金和TiN/IN718复合材料的EBSD晶粒取向分布图
图5  成形态及3种热处理态TiN/IN718复合材料的OM像
图6  成形态及3种热处理态TiN/IN718复合材料的SEM像
图7  SLM成形态TiN/IN718复合材料的SEM像及EDS线扫描分析
图8  SA热处理态TiN/IN718复合材料的SEM像及EDS分析
图9  IN718合金与不同热处理条件下TiN/IN718复合材料的XRD谱
图10  成形态 IN718与不同热处理态TiN/IN718复合材料试样的显微硬度
图11  成形态 IN718与不同热处理态的TiN/IN718复合材料的磨痕轮廓
SampleFCt / μmb / (103 μm)WR / (10-4 mm3·N-1·m-1)

IN718

TiN/IN718

TiN/IN718-DA

TiN/IN718-SA

TiN/IN718-HSA

0.7155

0.6712

0.3847

0.6230

0.7402

32.83

22.72

17.14

26.72

22.52

0.823

0.733

0.667

0.940

0.797

3.742

2.263

1.587

3.448

2.434

表1  成形态IN718与不同热处理态TiN/IN718复合材料的磨损实验结果
图12  成形态 IN718与不同热处理态的TiN/IN718复合材料的拉伸强度和延伸率及应力-应变曲线
图13  成形态IN718与HSA热处理态TiN/IN718复合材料的拉伸试样断口形貌
1 Abe F, Osakada K, Shiomi M, et al. The manufacturing of hard tools from metallic powders by selective laser melting [J]. J. Mater. Process. Technol., 2001, 111: 210
2 Delcuse L, Bahi S, Gunputh U, et al. Effect of powder bed fusion laser melting process parameters, build orientation and strut thickness on porosity, accuracy and tensile properties of an auxetic structure in IN718 alloy [J]. Addit. Manuf., 2020, 36: 101339
3 Yang Y, Li X, Khonsari M M, et al. On enhancing surface wear resistance via rotating grains during selective laser melting [J]. Addit. Manuf., 2020, 36: 101583
4 Trosch T, Strößner J, Völkl R, et al. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting [J]. Mater. Lett., 2016, 164: 428
5 Zhang D Y, Feng Z, Wang C J, et al. Comparison of microstructures and mechanical properties of Inconel 718 alloy processed by selective laser melting and casting [J]. Mater. Sci. Eng., 2018, A724: 357
6 Huang W, Yang J J, Yang H H, et al. Heat treatment of Inconel 718 produced by selective laser melting: Microstructure and mechanical properties [J]. Mater. Sci. Eng., 2019, A750: 98
7 Moussaoui K, Rubio W, Mousseigne M, et al. Effects of selective laser melting additive manufacturing parameters of Inconel 718 on porosity, microstructure and mechanical properties [J]. Mater. Sci. Eng., 2018, A735: 182
8 Hu Y L, Lin X, Zhang S Y, et al. Effect of solution heat treatment on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by laser solid forming [J]. J. Alloys Compd., 2018, 767: 330
9 Yao X L, Moon S K, Lee B Y, et al. Effects of heat treatment on microstructures and tensile properties of IN718/TiC nanocomposite fabricated by selective laser melting [J]. Int. J. Precis. Eng. Manuf., 2017, 18: 1693
10 Xu F J, Lv Y H, Liu Y X, et al. Microstructural evolution and mechanical properties of Inconel 625 alloy during pulsed plasma arc deposition process [J]. J. Mater. Sci. Technol., 2013, 29: 480
11 Cao G H, Sun T Y, Wang C H, et al. Investigations of γ', γ'' and δ precipitates in heat-treated Inconel 718 alloy fabricated by selective laser melting [J]. Mater. Charact., 2018, 136: 398
12 Nguyen Q B, Luu D N, Nai S M L, et al. The role of powder layer thickness on the quality of SLM printed parts [J]. Arch. Civ. Mech. Eng., 2018, 18: 948
13 Nadammal N, Cabeza S, Mishurova T, et al. Effect of hatch length on the development of microstructure, texture and residual stresses in selective laser melted superalloy Inconel 718 [J]. Mater. Des., 2017, 134: 139
14 Schneider J, Lund B, Fullen M. Effect of heat treatment variations on the mechanical properties of Inconel 718 selective laser melted specimens [J]. Addit. Manuf., 2018, 21: 248
15 Chen L, Sun Y Z, Li L, et al. Effect of heat treatment on the microstructure and high temperature oxidation behavior of TiC/Inconel 625 nanocomposites fabricated by selective laser melting [J]. Corros. Sci., 2020, 169: 168606
16 Nguyen Q B, Zhu Z, Chua B W, et al. Development of WC-Inconel composites using selective laser melting [J]. Arch. Civ. Mech. Eng., 2018, 18: 1410
17 Zhang B C, Bi G J, Nai S, et al. Microhardness and microstructure evolution of TiB2 reinforced Inconel 625/TiB2 composite produced by selective laser melting [J]. Opt. Laser Technol., 2016, 80: 186
18 Tanprayoon D, Srisawadi S, Sato Y, et al. Microstructure and hardness response of novel 316L stainless steel composite with TiN addition fabricated by SLM [J]. Opt. Laser Technol., 2020, 129: 106238
19 Chen Q C, Wu G Z, Li D S, et al. Understanding the unusual friction behavior of TiN films in vacuum [J]. Tribol. Int., 2019, 137: 379
20 Zhang D Y, Niu W, Cao X Y, et al. Effect of standard heat treatment on the microstructure and mechanical properties of selective laser melting manufactured Inconel 718 superalloy [J]. Mater. Sci. Eng., 2015, A644: 32
21 Blackwell P L. The mechanical and microstructural characteristics of laser-deposited IN718 [J]. J. Mater. Process. Technol., 2005, 170: 240
22 Zhao Y, Guan K, Yang Z Q, et al. The effect of subsequent heat treatment on the evolution behavior of second phase particles and mechanical properties of the Inconel 718 superalloy manufactured by selective laser melting [J]. Mater. Sci. Eng., 2020, A794: 139931
23 Liu F C, Lin X, Yang G L, et al. Microstructure and residual stress of laser rapid formed Inconel 718 nickel-base superalloy [J]. Opt. Laser Technol., 2011, 43: 208
24 Xiao H, Li S M, Xiao W J, et al. Effects of laser modes on Nb segregation and Laves phase formation during laser additive manufacturing of nickel-based superalloy [J]. Mater. Lett., 2017, 188: 260
25 Cao Y, Bai P C, Liu F, et al. Effect of the solution temperature on the precipitates and grain evolution of IN718 fabricated by laser additive manufacturing [J]. Materials (Basel), 2020, 13: 340
26 Desvallees Y, Bouzidi M, Bois F, et al. Delta phase in Inconel 718: Mechanical properties and forging process requirements [A].Superalloys 718, 625, 706 and Various Dericatives [C]. Warrendale, PA: TMS, 1994: 281
[1] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[2] 徐磊, 田晓生, 吴杰, 卢正冠, 杨锐. 热等静压成形Inconel 718粉末合金的显微组织和力学性能[J]. 金属学报, 2023, 59(5): 693-702.
[3] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[4] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[5] 马宗义, 肖伯律, 张峻凡, 朱士泽, 王东. 航天装备牵引下的铝基复合材料研究进展与展望[J]. 金属学报, 2023, 59(4): 457-466.
[6] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[7] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[8] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[9] 杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
[10] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[11] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[12] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[13] 王孟, 杨永强, Trofimov Vyacheslav, 宋长辉, 周瀚翔, 王迪. 粉末粒径对AlSi10Mg合金选区激光熔化成形的影响[J]. 金属学报, 2023, 59(1): 147-156.
[14] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[15] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.