Please wait a minute...
金属学报  2021, Vol. 57 Issue (6): 717-724    DOI: 10.11900/0412.1961.2020.00276
  研究论文 本期目录 | 过刊浏览 |
时效对Ti-50.8Ni-0.1Zr形状记忆合金显微组织、拉伸性能和记忆行为的影响
叶俊杰, 贺志荣(), 张坤刚, 杜雨青
陕西理工大学 材料科学与工程学院 汉中 723001
Effect of Ageing on Microsturcture, Tensile Properties, and Shape Memory Behaviors of Ti-50.8Ni-0.1Zr Shape Memory Alloy
YE Junjie, HE Zhirong(), ZHANG Kungang, DU Yuqing
School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
引用本文:

叶俊杰, 贺志荣, 张坤刚, 杜雨青. 时效对Ti-50.8Ni-0.1Zr形状记忆合金显微组织、拉伸性能和记忆行为的影响[J]. 金属学报, 2021, 57(6): 717-724.
Junjie YE, Zhirong HE, Kungang ZHANG, Yuqing DU. Effect of Ageing on Microsturcture, Tensile Properties, and Shape Memory Behaviors of Ti-50.8Ni-0.1Zr Shape Memory Alloy[J]. Acta Metall Sin, 2021, 57(6): 717-724.

全文: PDF(5758 KB)   HTML
摘要: 

用TEM和拉伸实验研究了时效工艺对Ti-50.8Ni-0.1Zr形状记忆合金显微组织、拉伸性能和形状记忆行为的影响。300、400和500℃时效态Ti-50.8Ni-0.1Zr合金中Ti3Ni4析出相分别呈颗粒状、透镜状和长条状,时效温度比时效时间对析出相形态、尺寸和弥散度的影响更大。时效处理后合金的强度升高,塑性降低。随时效时间(tag)延长,300℃时效态合金抗拉强度(Rm)升高,断后伸长率(A)降低;400℃时效态合金Rm先升后降,A先降后升;500℃时效态合金Rm降低,A升高。300℃时效1~50 h和400℃时效1 h的合金呈现良好的超弹性,400℃时效5~50 h和500℃时效1~50 h的合金呈现良好的形状记忆效应。随tag延长,300℃时效态合金的应力诱发马氏体相变临界应力降低,能耗升高;400和500℃时效态合金的马氏体再取向应力和能耗均降低。

关键词 Ti-50.8Ni-0.1Zr合金形状记忆合金时效显微组织形状记忆行为    
Abstract

To improve the properties of Ti-Ni shape memory alloys (SMAs), a third element can be added to them and assisted by a heat treatment process. After the Ni-rich Ti-Ni SMAs are doped with a small amount of Zr, the parent phase of the alloy is observed to exhibit enhanced stability; further, the alloys exhibit improved yield strength, elongation, and memory performance. The effects of the composition and annealing processes on the phase transformation behaviors and mechanical properties of the Ti-Ni-Zr SMAs have been studied; however, the microstructure, tensile properties, and shape memory behaviors of the aged Ti-Ni-Zr SMAs remain to be investigated. In this work, a Ni-rich Ti-50.8Ni-0.1Zr alloy could be obtained by doping the Ti-Ni alloys with 0.1%Zr (atomic fraction). The effects of the ageing processes on the microstructure, tensile properties, and shape memory behaviors of the alloy were investigated through TEM and tensile tests. The Ti3Ni4 precipitates in the Ti-50.8Ni-0.1Zr alloy samples aged at 300, 400, and 500oC exhibit morphologies of fine particles, lenticular particles, and long strips, respectively. The effect of ageing temperature on the morphology, size, and dispersion of precipitates is greater than that of the ageing time. The alloy exhibited enhanced strength but reduced ductility after the ageing treatment. With the increasing ageing time (tag), the tensile strength (Rm) increased and the percentage elongation (A) decreased when considering the alloy sample aged at 300oC. In case of the alloy sample aged at 400oC, Rm initially increased and subsequently decreased, whereas A initially decreased and subsequently increased. The alloy sample aged at 500oC exhibited a reduced Rm but an enhanced A. The alloy samples aged at 300oC for 1-50 h or at 400oC for 1 h exhibited superelasticity, whereas those aged at 400oC for 5-50 h or 500oC for 1-50 h exhibited the shape memory effect. In the alloy samples aged at 300oC, higher tag values resulted in enhanced energy dissipation and lower critical stress values for stress-induced martensite transformation. Alloy ageing at 400oC or 500oC resulted in lower critical stress values for martensite reorientation and lower energy dissipation.

Key wordsTi-50.8Ni-0.1Zr alloy    shape memory alloy    ageing    microstructure    shape memory behavior
收稿日期: 2020-07-23     
ZTFLH:  TG113.25  
基金资助:国家重点研发计划项目(2016YFE0111400)
作者简介: 叶俊杰,男,1996年生,硕士生
图1  不同工艺时效态Ti-50.8Ni-0.1Zr形状记忆合金的TEM像
图2  不同温度和时间时效处理后Ti-50.8Ni-0.1Zr合金的拉伸曲线
图3  时效温度和时效时间对Ti-50.8Ni-0.1Zr合金抗拉强度和断后伸长率的影响
图4  时效温度和时效时间对Ti-50.8Ni-0.1Zr合金形状记忆行为的影响
图5  时效温度和时效时间对Ti-50.8Ni-0.1Zr合金应力-应变曲线平台应力(σM)、残余应变(εR)和能耗(ΔW)的影响
1 Jin M J, Song Y W, Wang X D, et al. Ultrahigh damping capacity achieved by modulating R phase in Ti49.2Ni50.8 shape memory alloy wires [J]. Scr. Mater., 2020, 183: 102
2 Zheng Y, Dong Y, Li Y H. Resilience and life-cycle performance of smart bridges with shape memory alloy (SMA)-cable-based bearings [J]. Constr. Build. Mater., 2018, 158: 389
3 Azadpour F, Maghsoudi A A. Experimental and analytical investigation of continuous RC beams strengthened by SMA strands under cyclic loading [J]. Constr. Build. Mater., 2020, 239: 117730
4 Jani J M, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities [J]. Mater. Des., 2014, 56: 1078
5 Soother D K, Daudpoto J, Chowdhry B S. Challenges for practical applications of shape memory alloy actuators [J]. Mater. Res. Express, 2020, 7: 073001
6 Sun L, Huang W M, Ding Z, et al. Stimulus-responsive shape memory materials: A review [J]. Mater. Des., 2012, 33: 577
7 Shariat B S, Meng Q L, Mahmud A S, et al. Functionally graded shape memory alloys: Design, fabrication and experimental evaluation [J]. Mater. Des., 2017, 124: 225
8 He Z R, Zhou J E, Miyazaki S. Relationship between transformation behaviors and Ni content in solution-aged Ti-Ni alloys [J]. Acta Metall. Sin., 2003, 39: 617
8 贺志荣, 周敬恩, 宫崎修一. 固溶时效态Ti-Ni合金相变行为与Ni含量的关系 [J]. 金属学报, 2003, 39: 617
9 He Z R, Wang F, Wang Y S, et al. Effects of V and Cr on transformation and deformation characteristics of Ti-Ni superelastic alloy [J]. Acta Metall. Sin., 2007, 43: 1293
9 贺志荣, 王 芳, 王永善等. V和Cr对Ti-Ni超弹性合金相变和形变特性的影响 [J]. 金属学报, 2007, 43: 1293
10 Bozzolo G, Noebe R D, Mosca H O. Site preference of ternary alloying additions to NiTi: Fe, Pt, Pd, Au, Al, Cu, Zr and Hf [J]. J. Alloys Compd., 2005, 389: 80
11 Yuan Z S, Lin D Z, Cui Y, et al. Research progress on the phase transformation behavior, microstructure and property of NiTi based high temperature shape memory alloys [J]. Rare Met. Mater. Eng., 2018, 47: 2269
11 袁志山, 吝德智, 崔 跃等. NiTi基高温记忆合金相变行为与组织性能研究进展 [J]. 稀有金属材料与工程, 2018, 47: 2269
12 He Z R, Wang F, Zhou J E. Effect of Ni content and heat treatment on phase transformation and deformation behavior of Ti-Ni shape memory alloys [J]. Heat Treat. Met, 2006, 31(9): 17
12 贺志荣, 王 芳, 周敬恩. Ni含量和热处理对Ti-Ni形状记忆合金相变和形变行为的影响 [J]. 金属热处理, 2006, 31(9): 17
13 Wang H Z. Microstructure and strain recovery characteristic of proton irradiated NiTi alloys [D]. Harbin: Harbin Institute of Technology, 2019
13 王海振. 质子辐照NiTi合金的微观组织结构与应变恢复特性 [D]. 哈尔滨: 哈尔滨工业大学, 2019
14 Frenzel J, George E P, Dlouhy A, et al. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys [J]. Acta Mater., 2010, 58: 3444
15 Tong Y X, Liu J T, Chen F, et al. Effect of aging on martensitic transformation and superelasticity of TiNiCr shape memory alloy [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 2598
16 He Z R, Wang F. Effect of heat treatment on transformation behavior of low-temperature superelasticity alloy Ti-50.8Ni-0.3Cr [J]. Acta Metall. Sin., 2010, 46: 329
16 贺志荣, 王 芳. 热处理对Ti-Ni-Cr低温超弹性合金相变行为的影响 [J]. 金属学报, 2010, 46: 329
17 Feng Z W, Qian D F, Gao B D, et al. Research on properties of TiNiZr shape memory alloys [J]. Chin. J. Rare Met., 2001, 25: 47
17 冯昭伟, 千东范, 高宝东等. TiNiZr形状记忆合金的性能研究 [J]. 稀有金属, 2001, 25: 47
18 Feng Z W, Cui Y, Shang Z Y, et al. Development of NiTiZr high temperature shape memory alloys [J]. Mater. Rev., 2016, 30: 616
18 冯昭伟, 崔 跃, 尚再艳等. 镍钛锆高温形状记忆合金的研究进展 [J]. 材料导报, 2016, 30: 616
19 Yi X Y, Wang H Z, Sun B, et al. The crystallization process, microstructure, martensitic transformation and mechanical properties of Ti-Ni-Zr alloy ribbons [J]. J. Alloys Compd., 2019, 778: 542
20 Li Q Q, Ma Y H, Li Y. Microstructure, phase transformation and shape memory properties of Ni-Ti-Zr alloys [J]. Foundry, 2019, 68: 1204
20 李启泉, 马悦辉, 李 岩. Ni-Ti-Zr合金组织、相变与形状记忆性能 [J]. 铸造, 2019, 68: 1204
21 Malykhin S V, Kondratenko V V, АKopylets I, et al. Structure and phase formation features of Ti-Zr-Ni quasicrystalline films under heating [J]. J. Nano-Electron. Phys., 2019, 11: 03009
22 Atli K C. The effect of tensile deformation on the damping capacity of NiTi shape memory alloy [J]. J. Alloys Compd., 2016, 679: 260
23 Yi X Y, Gao W H, Wang H Z, et al. Dependence of aging parameters on precipitation behavior, martensitic transformation and mechanical properties of the aged Ni-Ti alloy under super high pressure [J]. Mater. Sci. Eng., 2018, A736: 354
24 Holec D, Bojda O, Dlouhý A. Ni4Ti3 precipitate structures in Ni-rich NiTi shape memory alloys [J]. Mater. Sci. Eng., 2006, A481-482: 462
25 Santamarta R, Arróyave R, Pons J, et al. TEM study of structural and microstructural characteristics of a precipitate phase in Ni-rich Ni-Ti-Hf and Ni-Ti-Zr shape memory alloys [J]. Acta Mater., 2013, 61: 6191
26 Wang Q, He Z R, Shao D W. Effects of Solution annealing and aging on tensile property and microstructure of Ti-Ni-Cr shape memory alloy [J]. Rare Met. Mater. Eng., 2012, 41: 1191
26 王 启, 贺志荣, 邵大伟. 固溶-时效处理对Ti-Ni-Cr形状记忆合金拉伸性能和显微组织的影响 [J]. 稀有金属材料与工程, 2012, 41: 1191
27 Sandu A M, Tsuchiya K, Tabuchi M, et al. Microstructural evolution during isothermal aging in Ni-Rich Ti-Zr-Ni shape memory alloys [J]. Mater. Trans., 2007, 48: 432
28 Sandu A, Tsuchiya K, Yamamoto S, et al. Effect of aging on microstructure and martensitic transformation in Ti-Zr-Ni shape memory alloys [J]. Mater. Sci. Forum, 2007, 539-543: 3163
29 Chang B C, Shaw J A, Iadicola M A. Thermodynamics of shape memory alloy wire: Modeling, experiments, and application [J]. Continuum Mech. Thermodyn., 2006, 18: 83
30 Chumlyakov Y I, Kireeva I V, Karaman I, et al. Orientational dependence of shape memory effects and superelasticity in CoNiGa, NiMnGa, CoNiAl, FeNiCoTi, and TiNi single crystals [J]. Russ. Phys. J., 2004, 47: 893
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[5] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[6] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[7] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[8] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[9] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[10] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[11] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[12] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[13] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[14] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[15] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.