Please wait a minute...
金属学报  2021, Vol. 57 Issue (6): 725-735    DOI: 10.11900/0412.1961.2020.00239
  研究论文 本期目录 | 过刊浏览 |
搅拌头转速对2507双相不锈钢搅拌摩擦加工组织及性能的影响
陈果1,2, 王新波1,2, 张仁晓1,2, 马成悦1,2, 杨海峰1,2, 周利1,2(), 赵运强3
1.哈尔滨工业大学 先进焊接与连接国家重点实验室 哈尔滨 150001
2.哈尔滨工业大学(威海) 山东省特种焊接技术重点实验室 威海 264209
3.广东省科学院中乌焊接研究所 广东省现代焊接技术重点实验室 广州 510651
Effect of Tool Rotation Speed on Microstructure and Properties of Friction Stir Processed 2507 Duplex Stainless Steel
CHEN Guo1,2, WANG Xinbo1,2, ZHANG Renxiao1,2, MA Chengyue1,2, YANG Haifeng1,2, ZHOU Li1,2(), ZHAO Yunqiang3
1.State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
2.Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
3.Guangdong Provincial Key Laboratory of Advanced Welding Technology, China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangzhou 510651, China
引用本文:

陈果, 王新波, 张仁晓, 马成悦, 杨海峰, 周利, 赵运强. 搅拌头转速对2507双相不锈钢搅拌摩擦加工组织及性能的影响[J]. 金属学报, 2021, 57(6): 725-735.
Guo CHEN, Xinbo WANG, Renxiao ZHANG, Chengyue MA, Haifeng YANG, Li ZHOU, Yunqiang ZHAO. Effect of Tool Rotation Speed on Microstructure and Properties of Friction Stir Processed 2507 Duplex Stainless Steel[J]. Acta Metall Sin, 2021, 57(6): 725-735.

全文: PDF(12153 KB)   HTML
摘要: 

通过对5 mm厚2507双相不锈钢进行搅拌摩擦加工,研究了在加工速率为100 mm/min时搅拌头转速对加工区域组织、力学性能和腐蚀性能的影响。结果表明,随着搅拌头转速的增大,搅拌区晶粒尺寸呈现先减小后增大的趋势。加工热循环和应力变形对加工区铁素体与奥氏体组织比例的变化影响不大,其铁素体含量仍保持在标准规范40%~60%之间。仅在搅拌头转速为200 r/min时,在加工区底部发现σ相析出。加工区显微硬度分布呈现“盆状”,其硬度最高值出现在搅拌区前进侧的底部,对应搅拌区晶粒尺寸最细小处。随着搅拌头转速的增加,搅拌区纵向拉伸强度呈现先增大后减小的趋势,而塑性则呈现先减小后增大的趋势。搅拌头转速为400 r/min时,搅拌区具有最优腐蚀性能。

关键词 双相不锈钢搅拌摩擦加工析出相力学性能腐蚀性能    
Abstract

Duplex stainless steel with its exceptional corrosion resistance, mechanical properties, and proficient weldability has been widely used in ships and bridges, as well as petrochemical and seawater desalination industries. Friction stir processing (FSP) does not only induce dynamic recrystallization of the material but also achieves the purpose of repairing the crack automatically, which markedly improves the mechanical properties of duplex stainless steel. Thus, FSP is particularly useful for crack repair of duplex stainless steel structures. In the present study, microstructure, mechanical property, and corrosion property of FSP 2507 duplex stainless steel were investigated. FSP was performed at a constant welding speed of 100 mm/min and tool rotation speeds of 200, 300, 400, 500, and 600 r/min using a tungsten-rhenium-based tool. Due to the thermal and mechanical effects in the processing, the section of the processing zone can be divided into the thermo-mechanically affected zone (TMAZ) and the stir zone (SZ). Only under the sufficient parameters of thermoplastic flow, the internal faultless processing zone was obtained. In accordance with the increased tool rotating speed, the grain size of the SZ initially decreased and then increased. Processing heat cycle and stress deformation had an insignificant influence on the proportion of ferrite and austenite phases in the processing zone, and the ferrite content still remained between 40% and 60% in the standard specification. The σ phase was determined at the bottom of the processing zone, namely at the tool rotation speed of 200 r/min due to the low heat input. Microhardness distribution of the processing zone demonstrated a basin-like morphology, and the largest hardness value appeared at the bottom of the advanced side of the SZ, corresponding to the smallest grain size of the SZ. As the tool rotating speed increased, the longitudinal tensile strength of the SZ increased initially and then decreased, contrary to the elongation. According to the results of potentiometric polarization and electrochemical impedance spectroscopy, the refinement of grain enhanced the stability, compactness, and repassivation performance of surface passivation film. The corrosion resistance of the upper surface in the SZ exceeded that of the base material, rendering it more useful. When the tool rotation speed was 400 r/min, the SZ had the optimal corrosion properties.

Key wordsduplex stainless steel    friction stir process    precipitation phase    mechanical property    corrosion property
收稿日期: 2020-07-06     
ZTFLH:  TG453.9  
基金资助:山东省重大科技创新工程项目(2017CXGC0811);广州市科技计划项目(201704030038)
作者简介: 陈 果,男,1996年生,硕士生
图1  搅拌摩擦加工过程示意图
图2  纵向拉伸试样、组织分析及硬度测试试样和腐蚀测试试样截取示意图
图3  不同搅拌头转速下2507双相不锈钢搅拌摩擦加工区截面形貌的OM像
图4  搅拌头转速400 r/min时2507双相不锈钢搅拌摩擦加工区各区域微观组织的EBSD像(a) BM (b) TMAZ (c) SZ
图5  不同搅拌头转速下2507双相不锈钢搅拌区微观组织的OM像
图6  不同搅拌头转速下2507双相不锈钢搅拌区晶粒尺寸和铁素体含量变化
图7  搅拌头转速200 r/min时2507双相不锈钢搅拌区底部析出相的SEM像
PositionCrNiMoFePossible phase
A24.897.702.28Bal.γ
B26.905.673.26Bal.α
C28.097.703.97Bal.σ
表1  图7b中点A~C的EDS分析 (mass fraction / %)
图8  不同搅拌头转速下2507双相不锈钢搅拌区的XRD谱
图9  不同搅拌头转速下2507双相不锈钢加工区域硬度分布
图10  不同搅拌头转速下2507双相不锈钢搅拌区纵向拉伸性能
图11  不同搅拌头转速下2507双相不锈钢断口形貌的SEM像
图12  母材和不同搅拌头转速下2507双相不锈钢搅拌区表面极化曲线
SampleEcorr / Vicorr / (10-7 A·cm-2)ipass / (10-5 A·cm-2)Epit / V
BM-0.598.261.941.09
200 r·min-1-0.734.451.041.12
300 r·min-1-0.405.600.971.11
400 r·min-1-0.532.720.681.18
500 r·min-1-0.551.930.931.20
600 r·min-1-0.602.951.081.21
表2  不同搅拌头转速下搅拌区表面极化曲线特征值提取
图13  母材和不同搅拌头转速下2507双相不锈钢搅拌区EIS(a) Nyquist (b) Bode
1 Verma J, Taiwade R V. Effect of welding processes and conditions on the microstructure, mechanical properties and corrosion resistance of duplex stainless steel weldments—A review [J]. J. Manuf. Proc., 2017, 25: 134
2 Sathiya P, Aravindan S, Soundararajan R, et al. Effect of shielding gases on mechanical and metallurgical properties of duplex stainless-steel welds [J]. J. Mater. Sci., 2009, 44: 114
3 Deng B, Jiang Y M, Gong J, et al. Critical pitting and repassivation temperatures for duplex stainless steel in chloride solutions [J]. Electrochim. Acta, 2008, 53: 5220
4 Tavares S S M, Silva V G, Pardal J M, et al. Investigation of stress corrosion cracks in a UNS S32750 superduplex stainless steel [J]. Eng. Fail. Anal., 2013, 35: 88
5 Ma Z Y. Friction stir processing technology: A review [J]. Metall. Mater. Trans., 2008, 39A: 642
6 Ji S D, Huang R F, Wu B S. Review on friction stir welding repair [J]. J. Shenyang Aero. Univ., 2017, 34(5): 1
6 姬书得, 黄若飞, 吴宝生. 搅拌摩擦焊修复技术的研究现状 [J]. 沈阳航空航天大学学报, 2017, 34(5): 1
7 Chen W L. The precipitation behavior of the σ phase and its effect on performance in 2707 duplex stainless steel [D]. Taiyuan: Taiyuan University of Technology, 2018
7 陈万里. 2707双相不锈钢中σ相析出行为及其对性能的影响 [D]. 太原: 太原理工大学, 2018
8 Liu X L. Study on the microstructure and properties of friction stir welded hyper stainless steel SAF2707 joint [D]. Taiyuan: Taiyuan University of Technology, 2017
8 刘兴龙. 特超级双相不锈钢SAF2707搅拌摩擦焊接头显微组织和性能研究 [D]. 太原: 太原理工大学, 2017
9 Esmailzadeh M, Shamanian M, Kermanpur A, et al. Microstructure and mechanical properties of friction stir welded lean duplex stainless steel [J]. Mater. Sci. Eng., 2013, A561: 486
10 Santos T F D A, Torres E A, Ramirez A J. Friction stir welding of duplex stainless steels [J]. Weld. Int., 2017, 32: 103
11 Mishra M K, Gunasekaran G, Rao A G, et al. Effect of multipass friction stir processing on mechanical and corrosion behavior of 2507 super duplex stainless steel [J]. J. Mater. Eng. Perform., 2017, 26: 849
12 Magnani M, Terada M, Lino A O, et al. Microstructural and electrochemical characterization of friction stir welded duplex stainless steels [J]. Int. J. Electrochem. Sci., 2014, 9: 2966
13 Li G H, Zhou L, Luo S F, et al. Microstructure and mechanical properties of self-reacting friction stir welded AA2219-T87 aluminium alloy [J]. Sci. Technol. Weld. Join., 2019, 25: 142
14 Sato Y S, Kokawa H, Ikeda K, et al. Microtexture in the friction-stir weld of an aluminum alloy [J]. Metall. Mater. Trans., 2001, 32A: 941
15 Saeid T, Abdollah-Zadeh A, Assadi H, et al. Effect of friction stir welding speed on the microstructure and mechanical properties of a duplex stainless steel [J]. Mater. Sci. Eng., 2008, A496: 262
16 Santos T F D A, López E A T, Da Fonseca E B, et al. Friction stir welding of duplex and superduplex stainless steels and some aspects of microstructural characterization and mechanical performance [J]. Mater. Res., 2016, 19: 117
17 Ma M. Hot deformation behavior and microstructural evolution of duplex stainless steels [D]. Shenyang: Northeastern University, 2016
17 马 明. 双相不锈钢热变形行为及组织演变 [D]. 沈阳: 东北大学, 2016
18 Zhang Z Y, Zhang H Z, Hu J, et al. Microstructure evolution and mechanical properties of briefly heat-treated SAF 2507 super duplex stainless steel welds [J]. Constr. Build. Mater., 2018, 168: 338
19 Giorjão R A R, Pereira V F, Terada M, et al. Microstructure and mechanical properties of friction stir welded 8 mm pipe SAF 2507 super duplex stainless steel [J]. J. Mater. Res. Technol., 2018, 340: 1
20 Santos T F A, Marinho R R, Paes M T P, et al. Microstructure evaluation of UNS S32205 duplex stainless steel friction stir welds [J]. Rem Rev. Esc. Minas., 2013, 66: 187
21 Sato Y S, Nelson T W, Sterling C J, et al. Microstructure and mechanical properties of friction stir welded SAF 2507 super duplex stainless steel [J]. Mater. Sci. Eng., 2005, A397: 376
22 Steel R J, Sterling C J. Friction stir welding of 2205 duplex stainless and 3Cr12 steels [A]. The Fourteenth International Offshore and Polar Engineering Conference [C]. California: International Society of Offshore and Polar Engineers, 2004: 67
23 Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals [J]. Scr. Mater., 2010, 63: 1201
24 Atapour M, Sarlak H, Esmailzadeh M. Pitting corrosion susceptibility of friction stir welded lean duplex stainless steel joints [J]. Int. J. Adv. Manuf. Technol., 2016, 83: 721
25 Sarlak H, Atapour M, Esmailzadeh M. Corrosion behavior of friction stir welded lean duplex stainless steel [J]. Mater. Des., 2015, 66: 209
26 Wang X Y, Li D Y. Mechanical and electrochemical behavior of nanocrystalline surface of 304 stainless steel [J]. Electrochim. Acta, 2002, 47: 3939
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.