Please wait a minute...
金属学报  2020, Vol. 56 Issue (5): 753-759    DOI: 10.11900/0412.1961.2019.00324
  本期目录 | 过刊浏览 |
氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟
刘继召1,2,3, 黄鹤飞1,2(), 朱振博1,2, 刘阿文1,2,3, 李燕1,2,3()
1.中国科学院上海应用物理研究所 上海 201800
2.中国科学院大学核科学与技术学院 北京 100049
3.上海科技大学物质科学与技术学院 上海 201210
Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation
LIU Jizhao1,2,3, HUANG Hefei1,2(), ZHU Zhenbo1,2, LIU Awen1,2,3, LI Yan1,2,3()
1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2.School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
3.School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
全文: PDF(2120 KB)   HTML
摘要: 

利用纳米压痕仪的连续刚度测量模式测试了常温氙离子辐照后Hastelloy N合金的纳米硬度。结果表明,辐照样品的纳米硬度均大于未辐照样品的纳米硬度,且辐照剂量在0.5~3.0 dpa这一范围内时,辐照样品的纳米硬度处于饱和状态。在Nix-Gao模型的基础上,分离出未辐照样品和辐照样品的压痕尺寸效应,并通过VLM (volume law of mixture)模型来模拟实验测得的纳米硬度。由于随着压头压入深度的增加,塑性影响区中将同时包含辐照损伤层与基体,在VLM模型中引入“界面参数”(χ)以修正基体的形变量,改进后的模型能够更好地模拟纳米压痕的实验结果。

关键词 辐照硬化纳米压痕VLM模型数值模拟    
Abstract

Ion irradiation experiments are of importance for investigating irradiation damage of reactor structural materials. However, estimating the irradiation hardening of ion-irradiated materials is difficult due to the limitation of ion penetration depth. In recent years, nanoindentation test has been widely used to study the irradiation hardening of materials, because the continuous stiffness measurement (CSM) mode can obtain the relationship between nanohardness and indentation depth at a very small penetration depth. In this work, the average nanohardness of Hastelloy N alloy irradiated by xenon ion at room temperature was tested by this mode. The results showed that the nanohardness in the irradiated samples was larger than that in the unirradiated sample and this value of irradiated samples is saturated when the irradiation dose is in the range of 0.5~3.0 dpa. Based on the Nix-Gao model, the indentation size effects (ISE) of unirradiated and irradiated samples were separated from nanohardness measured by nanoindentation. The volume law of mixture model (VLM) was subsequently applied to simulate the measured nanohardness. As the depth of indentation increases, the plasticity affected region (PAR) includes both irradiation damage layer and matrix. Interface parameter was introduced to correct the volume of matrix deformation. The results indicated that the improved VLM model leads to a characteristic relation for the depth dependence of nanohardness that is in excellent agreement with nanoindentation experiments.

Key wordsirradiation hardening    nanoindentation    volume law of mixture (VLM) model    numerical simulation
收稿日期: 2019-09-26     
ZTFLH:  TL341  
基金资助:国家自然科学基金项目(11605271);国家自然科学基金项目(11975304);国家自然科学基金项目(91126012)
通讯作者: 黄鹤飞,李燕     E-mail: huanghefei@sinap.ac.cn;liyan@sinap.ac.cn
Corresponding author: HUANG Hefei,LI Yan     E-mail: huanghefei@sinap.ac.cn;liyan@sinap.ac.cn
作者简介: 刘继召,男,1991年生,博士生

引用本文:

刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
Jizhao LIU, Hefei HUANG, Zhenbo ZHU, Awen LIU, Yan LI. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation. Acta Metall Sin, 2020, 56(5): 753-759.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00324      或      https://www.ams.org.cn/CN/Y2020/V56/I5/753

图1  辐照样品中离位损伤随深度的分布图
图2  进行纳米压痕实验后试样的压痕形状OM像
图3  离子辐照前后各个样品的平均纳米硬度随压头压入深度变化的曲线
图4  离子辐照前后各个样品的H2-h-1的关系曲线
SampleH0 / GPah* / nm
Unirradiated3.10±0.04228±9
Xe 0.5 dpa4.69±0.0358±2
Xe 1.0 dpa4.87±0.0840±5
Xe 3.0 dpa4.65±0.0457±3
表1  各个样品的H0及h*的值
图5  未辐照样品和辐照样品的压痕尺寸效应
图6  纳米压痕仪测量样品纳米硬度的示意图
图7  塑性影响区中基体的体积分数
图8  利用模型(VLM模型和Nix-Gao模型)计算出来的纳米硬度与实验测得的纳米硬度对比图
图9  改进后的VLM模型计算出来的纳米硬度与实验测得的纳米硬度对比图
1 Liu P P, Wan F R, Zhan Q. A model to evaluate the nano-indentation hardness of ion-irradiated materials [J]. Nucl. Instrum. Methods Phys. Res., 2015, 342B: 13
2 Gao J, Huang H F, Liu J Z, et al. Synergistic effects on microstructural evolution and hardening of the Hastelloy N alloy under subsequent He and Xe ion irradiation [J]. J. Appl. Phys., 2018, 123: 205901
doi: 10.1063/1.5030028
3 Huang H F, Li J J, Li D H, et al. TEM, XRD and nanoindentation characterization of xenon ion irradiation damage in austenitic stainless steels [J]. J. Nucl. Mater., 2014, 454: 168
doi: 10.1016/j.jnucmat.2014.07.033
4 Lu Y P, Huang H F, Gao X Z, et al. A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy [J]. J. Mater. Sci. Technol., 2019, 35: 369
5 Liu X B, Wang R S, Ren A, et al. Evaluation of radiation hardening in ion-irradiated Fe based alloys by nanoindentation [J]. J. Nucl. Mater., 2014, 444: 1
doi: 10.1016/j.jnucmat.2013.09.026
6 Takayama Y, Kasada R, Sakamoto Y, et al. Nanoindentation hardness and its extrapolation to bulk-equivalent hardness of F82H steels after single- and dual-ion beam irradiation [J]. J. Nucl. Mater., 2013, 442(Suppl.1): S23
7 Huang H F, Li D H, Li J J, et al. Nanostructure variations and their effects on mechanical strength of Ni-17Mo-7Cr alloy under xenon ion irradiation [J]. Mater. Trans., 2014, 55: 1243
8 Nix W D, Gao H J. Indentation size effects in crystalline materials: A law for strain gradient plasticity [J]. J. Mech. Phys. Solids, 1998, 46: 411
9 Yang Y T, Zhang C H, Meng Y C, et al. Nanoindentation on V-4Ti alloy irradiated by H and He ions [J]. J. Nucl. Mater., 2015, 459: 1
10 Wei Y P, Liu P P, Zhu Y M, et al. Evaluation of irradiation hardening and microstructure evolution under the synergistic interaction of He and subsequent Fe ions irradiation in CLAM steel [J]. J. Alloys Compd., 2016, 676: 481
doi: 10.1016/j.jallcom.2016.03.167
11 Xu C L, Zhang L, Qian W J, et al. The studies of irradiation hardening of stainless steel reactor internals under proton and xenon irradiation [J]. Nucl. Eng. Technol., 2016, 48: 758
12 Kasada R, Takayama Y, Yabuuchi K, et al. A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by nano-indentation techniques [J]. Fusion Eng. Des., 2011, 86: 2658
13 Xiao X Z, Yu L. Comparison of linear and square superposition hardening models for the surface nanoindentation of ion-irradiated materials [J]. J. Nucl. Mater., 2018, 503: 110
14 Kareer A, Prasitthipayong A, Krumwiede D, et al. An analytical method to extract irradiation hardening from nanoindentation hardness-depth curves [J]. J. Nucl. Mater., 2018, 498: 274
15 Hosemann P, Kiener D, Wang Y Q, et al. Issues to consider using nano indentation on shallow ion beam irradiated materials [J]. J. Nucl. Mater., 2012, 425: 136
16 Burnett P J, Rickerby D S. The mechanical properties of wear-resistant coatings: I: Modelling of hardness behaviour [J]. Thin Solid Films, 1987, 148: 41
17 Olivier W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. J. Mater. Res., 1992, 7: 1564
18 Zhu Z B, Huang H F, Liu J Z, et al. Xenon ion irradiation induced hardening in inconel 617 containing experiment and numerical calculation [J]. J. Nucl. Mater., 2019, 525: 32
19 Lee E H, Oliver W C, Mansur L K. Hardness measurements of Ar+-beam treated polyimide by depth-sensing ultra low load indentation [J]. J. Mater. Res., 1993, 8: 377
20 Chen H C, Hai Y, Liu R D, et al. The irradiation hardening of Ni-Mo-Cr and Ni-W-Cr alloy under Xe26+ ion irradiation [J]. Nucl. Instrum. Methods Phys. Res., 2018, 421B: 50
21 Liu J Z, Huang H F, Gao J, et al. Defects evolution and hardening in the Hastelloy N alloy by subsequent Xe and He ions irradiation [J]. J. Nucl. Mater., 2019, 517: 328
doi: 10.1016/j.jnucmat.2019.02.022
22 Sammuels L E, Mulhearn T O. An experimental investigation of the deformed zone associated with indentation hardness impressions [J]. J. Mech. Phys. Solids, 1957, 5: 125
doi: 10.1016/0022-5096(57)90056-X
23 Saleh M, Zaidi Z, Ionescu M, et al. Relationship between damage and hardness profiles in ion irradiated SS316 using nanoindentation―Experiments and modelling [J]. Int. J. Plast., 2016, 86: 151
24 Zhang Z X, Hasenhuetl E, Yabuuchi K, et al. Evaluation of helium effect on ion-irradiation hardening in pure tungsten by nano-indentation method [J]. Nucl. Mater. Energy, 2016, 9: 539
25 Rickerby D S, Burnett P J. Correlation of process and system parameters with structure and properties of physically vapour-deposited hard coatings [J]. Thin Solid Films, 1988, 157: 195
[1] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[2] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[3] 戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.
[4] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[5] 逯世杰, 王虎, 戴培元, 邓德安. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592.
[6] 张清东, 林潇, 刘吉阳, 胡树山. Q&P钢热处理过程有限元法数值模拟模型研究[J]. 金属学报, 2019, 55(12): 1569-1580.
[7] 赵鹏越, 郭永博, 白清顺, 张飞虎. 基于微观结构的多晶Cu纳米压痕表面缺陷研究[J]. 金属学报, 2018, 54(7): 1051-1058.
[8] 李军, 夏明许, 胡侨丹, 李建国. 大型铸锭均质化问题及其新解[J]. 金属学报, 2018, 54(5): 773-788.
[9] 刘新华, 付华栋, 何兴群, 付新彤, 江燕青, 谢建新. Cu-Al复合材料连铸直接成形数值模拟研究[J]. 金属学报, 2018, 54(3): 470-484.
[10] 刘政, 陈志平, 陈涛. 坩埚尺寸和电磁频率对半固态A356铝合金浆料流动的影响[J]. 金属学报, 2018, 54(3): 435-442.
[11] 王锦程, 郭灿, 张琪, 唐赛, 李俊杰, 王志军. 原子尺度下凝固形核计算模拟研究的进展[J]. 金属学报, 2018, 54(2): 204-216.
[12] 沈厚发, 陈康欣, 柳百成. 钢锭铸造过程宏观偏析数值模拟[J]. 金属学报, 2018, 54(2): 151-160.
[13] 朱苗勇, 娄文涛, 王卫领. 炼钢与连铸过程数值模拟研究进展[J]. 金属学报, 2018, 54(2): 131-150.
[14] 廖敦明, 曹流, 孙飞, 陈涛. 铸造宏观过程数值模拟技术的研究现状与展望[J]. 金属学报, 2018, 54(2): 161-173.
[15] 王强, 何明, 朱晓伟, 李显亮, 吴春雷, 董书琳, 刘铁. 电磁场技术在冶金领域应用的数值模拟研究进展[J]. 金属学报, 2018, 54(2): 228-246.