Please wait a minute...
金属学报  2019, Vol. 55 Issue (6): 751-761    DOI: 10.11900/0412.1961.2018.00486
  本期目录 | 过刊浏览 |
Fe-Cu-Pb合金液-液相分离及废旧电路板混合金属分级分离与回收
陈斌1,2,何杰1,2(),孙小钧1,2,赵九洲1,2,江鸿翔1,张丽丽1,郝红日1
1. 中国科学院金属研究所 沈阳 110016
2. 中国科学技术大学材料科学与工程学院 沈阳 110016
Liquid-Liquid Phase Separation of Fe-Cu-Pb Alloy and Its Application in Metal Separation and Recycling of Waste Printed Circuit Boards
Bin CHEN1,2,Jie HE1,2(),Xiaojun SUN1,2,Jiuzhou ZHAO1,2,Hongxiang JIANG1,Lili ZHANG1,Hongri HAO1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

陈斌,何杰,孙小钧,赵九洲,江鸿翔,张丽丽,郝红日. Fe-Cu-Pb合金液-液相分离及废旧电路板混合金属分级分离与回收[J]. 金属学报, 2019, 55(6): 751-761.
Bin CHEN, Jie HE, Xiaojun SUN, Jiuzhou ZHAO, Hongxiang JIANG, Lili ZHANG, Hongri HAO. Liquid-Liquid Phase Separation of Fe-Cu-Pb Alloy and Its Application in Metal Separation and Recycling of Waste Printed Circuit Boards[J]. Acta Metall Sin, 2019, 55(6): 751-761.

全文: PDF(13341 KB)   HTML
摘要: 

以废旧手机电路板为研究对象,采用热解技术使电路板金属与非金属解离,获得以Fe、Cu和Pb为主组分的混合金属。基于主组分为Fe、Cu和Pb,实验研究了(Fe0.4Cu0.6)100-xPbx三元合金的液-液相分离行为。结果表明,合适成分的Fe-Cu-Pb三元合金熔体在冷却过程中首先发生液-液相分离L→L(Fe)+L(Cu, Pb),待L(Fe)液相凝固后,剩余的液相L(Cu, Pb)再次发生液-液相分离L(Cu, Pb)→L(Cu)+L(Pb),最终主要形成富Fe、富Cu和富Pb三区分离结构。基于Fe-Cu-Pb合金液-液相分离凝固特征,设计了废旧电路板混合金属自组装分级分离系统,研究了混合金属中次组分Cr、Au、Cd等在主组分Fe、Cu和Pb中的富集行为,分析了离心超重条件对混合金属分离率和回收率的影响,建立了废旧手机电路板金属资源无害化回收处理新方法。

关键词 难混溶合金Fe-Cu-Pb合金液-液相分离废旧电路板金属分离与回收    
Abstract

The pyrolysis processing was carried out on the waste printed circuit boards (WPCBs) of mobile phones to dissociate metals from non-metals and obtain mixed metals with Fe, Cu and Pb as main components. Based on the main compositions of Fe, Cu and Pb, the liquid-liquid phase separation behavior of (Fe0.4Cu0.6)100-xPbx ternary alloy has been studied experimentally. The results show that the liquid-liquid phase separation of L→L(Fe)+L(Cu, Pb) may occur during the ternary Fe-Cu-Pb alloy melt cooling in the miscibility gap. After the liquid L(Fe) solidified, the secondary liquid-liquid phase separation L(Cu, Pb)→L(Cu)+L(Pb) takes place in the residual L(Cu, Pb) liquid phase, finally resulting in a three-zone separation structure. On the basis of the behavior of the liquid-liquid phase separation, a self-organized hierarchical separation system has been designed to separate and recycle these mixed metals from WPCBs. The enrichment behavior of the minor components like Cr, Au and Cd in the separation system was explored. The effect of super-gravity level on the metal separation and recycling rates has been discussed. As a result, a new harmless route has been established to recycle metal resources in WPCBs.

Key wordsimmiscible alloy    Fe-Cu-Pb alloy    liquid-liquid phase separation    waste printed circuit board    metal separation and recycling
收稿日期: 2018-10-30     
ZTFLH:  X705  
基金资助:国家自然科学基金项目(Nos.51574216);国家自然科学基金项目(51774264);国家自然科学基金项目(51374194);中国科学院金属研究所创新基金重点项目(No.SCJJ-2013-ZD-03);辽宁省自然科学基金项目(No.2015020172)
作者简介: 陈 斌,男,1991年生,博士生
图1  不同升温速率下废旧电路板的TG曲线
图2  热解前废旧手机电路板及热解后获得的混合金属
ElementCuFePbAuAgCrCoNiSiAlZnSnCdInBi
Content61.115.02.40.10.31.40.15.41.83.24.14.70.10.10.2
表1  废旧手机电路板混合金属组成
图3  (Fe0.4Cu0.6)100-xPbx三元合金的典型宏观分离形貌
图4  计算的不同Pb含量下Fe-Cu-Pb合金的组元液态不混溶区域
图5  三元(Fe0.4Cu0.6)72Pb28合金凝固过程示意图
MetalFeCuPbCrCoNiSiAuAgZnSnBiInCd
Fe--------------
Cu13-------------
Pb2915------------
Cr-11228-----------
Co-1617-4----------
Ni-2413-70---------
Si-35-1915-37-38-40--------
Au8-92077-30-------
Ag2823271915-20-6------
Zn4155-5-9-18-16-4-----
Sn1172100-4-11-10-31----
Bi26150241410-22241---
In1910-12072-10-11-230-1--
Cd17621762-13-11-21010-
表2  不同金属间的混合焓(ΔHA-B)[41]
图6  1473 K时次要金属在富Fe和富Cu液相中的分配系数的对数值lgKMCu/Fe以及其他学者的研究结果[27,48],及1233 K时添加和不添加Al作为捕集剂时次要金属在富Cu和富Pb液相中的分配系数的对数值lgKMCu/Pb
图7  超重力场中,MFeC-MPCB-MPb-MAl (质量比MFeC∶MPCB∶MPb∶MA=0.8∶1∶1.1∶0.1)、MFeC-MPCB (质量比MFeC∶MPCB=0.8∶1)和MCu-rich zone-MPb-MAl (质量比MCu-rich zone∶MPb∶MAl=1∶1.1∶0.1)铸锭切面的OM像(n=4500 r/min),及离心分离得到的Cu枝晶与富Pb物质
图8  离心转速(n)对铸锭富Fe区中Cu含量和富Cu区中Fe含量的影响
图9  不同转速下1473 K时富Fe液滴以及1233 K时富Pb液滴在Cu基体的运动速率(νS、ν'S)与液滴半径的关系
Separated substanceCrCoNiSiAgAuZnSnBiCdIn
Fe-rich94.993.680.893.7--3.24.1---
Cu-rich5.16.418.36.392.695.183.231.61.519.09.4
Pb-rich--0.9-7.44.913.664.398.581.090.6
表3  次要金属在不同分离物料中的回收率(H)
[1] Jia J, Zhao J Z, Guo J J, et al. Immiscible Alloys and Their Manufacturing Technique [M]. Harbin: Harbin Institure of Technology Press, 2002: 1
[1] (贾 均, 赵九洲, 郭景杰等. 难混溶合金及其制备技术 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2002: 1)
[2] He J, Zhao J Z, Li H L, et al. Directional solidification and microstructural refinement of immiscible alloys [J]. Metall. Mater. Trans., 2008, 39A: 1174
[3] He J, Zhao J Z. Microstructure evolution in a rapidly solidified Cu85Fe15 alloy undercooled into the metastable miscibility gap [J]. J. Mater. Sci. Technol., 2005, 21: 759
[4] Bian X F, Zhao X L, Wu Y Q, et al. Effect of magnetic field on binodal temperature in immiscible alloys [J]. J. Appl. Phys., 2013, 114: 131907
[5] Kaban I G, Hoyer W. Characteristics of liquid-liquid immiscibility in Al-Bi-Cu, Al-Bi-Si, and Al-Bi-Sn monotectic alloys: Differential scanning calorimetry, interfacial tension, and density difference measurements [J]. Phys. Rev., 2008, 77B: 125426
[6] Wang T M, Song T, Xu J J, et al. Preparation of homogeneous Al-Bi immiscible alloy by a cooling slope method [J]. Spec. Cast. Nonferrous Alloys, 2008, 28: 578
[6] (王同敏, 宋 涛, 许菁菁等. 冷却斜槽法制备均质Al-Bi系难混溶合金 [J]. 特种铸造及有色合金, 2008, 28: 578)
[7] Kolbe M, Gao J R. Liquid phase separation of Co-Cu alloys in the metastable miscibility gap [J]. Mater. Sci. Eng., 2005, A413-414: 509
[8] Cao C D, G?rler G P, Herlach D M, et al. Liquid-liquid phase separation in undercooled Co-Cu alloys [J]. Mater. Sci. Eng., 2002, A325: 503
[9] Wang H P, Wei B. Positive excess volume of liquid Fe-Cu alloys resulting from liquid structure change [J]. Phys. Lett., 2010, 374A: 4787
[10] Gao J, Wang Y P, Zhou Z M, et al. Phase separation in undercooled Cu-Cr melts [J]. Mater. Sci. Eng., 2007, A449-451: 654
[11] Li J Q, Ma B Q, Min S, et al. Effect of Ce addition on macroscopic core-shell structure of Cu-Sn-Bi immiscible alloy [J]. Mater. Lett., 2010, 64: 814
[12] Wang C P, Liu X J, Ohnuma I, et al. Formation of immiscible alloy powders with egg-type microstructure [J]. Science, 2002, 297: 990
[13] Wang H P, Wei B B. Understanding atomic-scale phase separation of liquid Fe-Cu alloy [J]. Chin. Sci. Bull., 2011, 56: 3416
[14] He J, Zhao J Z, Ratke L. Solidification microstructure and dynamics of metastable phase transformation in undercooled liquid Cu-Fe alloys [J]. Acta Mater., 2006, 54: 1749
[15] Jiang H X, Sun Q, Zhao J Z. Effect mechanism of a direct current on the solidification of immiscible alloys [J]. Chin. Phys. Lett., 2012, 29: 088104
[16] He J, Li H Q, Zhao J J, et al. Al-based metallic glass composites containing fcc Pb-rich crystalline spheres [J]. App. Phys. Lett., 2008, 93: 131907
[17] He J, Li H Q, Yang B J, et al. Liquid phase separation and microstructure characterization in a designed Al-based amorphous matrix composite with spherical crystalline particles [J]. J. Alloys Compd., 2010, 489: 535
[18] Ziewiec K, K?dzierski Z, Zielińska-Lipiec A, et al. Formation, properties and microstructure of amorphous/crystalline composite Ag20Cu30Ti50 alloy using miscibility gap [J]. J. Alloys Compd., 2009, 482: 114
[19] Kündig A A, Ohnuma M, Ohkubo T, et al. Glass formation and phase separation in the Ag-Cu-Zr system [J]. Scr. Mater., 2006, 55: 449
[20] He J, Mattern N, Tan J, et al. A bridge from monotectic alloys to liquid-phase-separated bulk metallic glasses: Design, microstructure and phase evolution [J]. Acta Mater., 2013, 61: 2102
[21] Kim M U, Ahn J P, Seok H K, et al. Application of spinodal decomposition to produce metallic glass matrix composite with simultaneous improvement of strength and plasticity [J]. Met. Mater. Int., 2009, 15: 193
[22] Eckert J, Das J, Kim K B, et al. High strength ductile Cu-base metallic glass [J]. Intermetallics, 2006, 14: 876
[23] He J, Wang Z Y, Hao H R, et al. Method for efficient separation and recycling of precious metals in waste circuit board [P]. Chin Pat, CN 104328281 B, 2016
[23] (何 杰, 王中原, 郝红日等. 一种高效分离与回收废弃线路板中贵金属的方法 [P]. 中国专利, CN 104328281 B, 2016)
[24] He J, Wang Z Y, Hao H R, et al. Self-assembly separation and resource recycling method for multi-metal components in electronic waste [P]. Chin Pat, CN 104313332 B, 2016
[24] (何 杰, 王中原, 郝红日等. 电子垃圾中多金属组分自组装分离与资源化回收的方法 [P]. 中国专利, CN 104313332 B, 2016)
[25] Chen B, He J, Xi Y Y, et al. Liquid-liquid hierarchical separation and metal recycling of waste printed circuit boards [J]. J. Hazard. Mater., 2019, 364: 388
[26] Chen B, He J, Zhao J Z. Phase separation of Fe-Cu-Pb alloy and recycling of mixed metals in waste printed circuit boards [J]. Mater. Sci. Forum, 2019, 944: 1265
[27] Yamaguchi K, Takeda Y. Copper enrichment of scrap by phase separation in liquid Fe-Cu-C system [J]. Shigen Sozai, 1997, 113: 1110
[27] (山口 勉功, 武田 要一. Fe-Cu-C系2液相分離による低品位銅スクラップからの銅の濃縮 [J]. 資源と素材, 1997, 113: 1110)
[28] State Environmental Protection Administration. Administrative measures on the prevention and control of environmental pollution by electronic waste [J]. Recycl. Resour. Circul. Econ., 2007, (6): 1
[28] (国家环境保护总局. 电子废物污染环境防治管理办法 [J]. 再生资源与循环经济, 2007, (6): 1)
[29] Hadi P, Xu M, Lin C S K, et al. Waste printed circuit board recycling techniques and product utilization [J]. J. Hazard. Mater., 2015, 283: 234
[30] Ministry of Environmental Protection of the People's Republic of China. List of national hazardous waste [EB/OL]. (2016-06-14). http://www.mee.gov.cn/gkml/hbb/bl/201606/t20160621_354852.htm
[30] (中华人民共和国环境保护部. 国家危险废物名录 [EB/OL]. (2016-06-14). http://www.mee.gov.cn/gkml/hbb/bl/201606/t20160621_354852.htm)
[31] Huang K, Guo J, Xu Z M. Recycling of waste printed circuit boards: A review of current technologies and treatment status in China [J]. J. Hazard. Mater., 2009, 164: 399
[32] Li J, Gao B, Xu Z M. New technology for separating resin powder and fiberglass powder from fiberglass-resin powder of waste printed circuit boards [J]. Environ. Sci. Technol., 2014, 48: 5171
[33] Marra A, Cesaro A, Belgiorno V. Separation efficiency of valuable and critical metals in WEEE mechanical treatments [J]. J. Clean. Prod., 2018, 186: 490
[34] Marques A C, Marrero J M C, de Fraga Malfatti C. A review of the recycling of non-metallic fractions of printed circuit boards [J]. SpringerPlus, 2013, 2: 521
[35] Long L S, Sun S Y, Zhong S, et al. Using vacuum pyrolysis and mechanical processing for recycling waste printed circuit boards [J]. J. Hazard. Mater., 2010, 177: 626
[36] Zhan L, Xu Z M. Separating criterion of Pb, Cd, Bi and Zn from metallic particles of crushed electronic wastes by vacuum evaporation [J]. Sep. Sci. Technol., 2012, 47: 913
[37] Guo X Y, Liu J X. Optimization of low-temperature alkaline smelting process of crushed metal enrichment originated from waste printed circuit boards [J]. J. Cen. South Univ., 2015, 22: 1643
[38] Zhou Y H, Qiu K Q. A new technology for recycling materials from waste printed circuit boards [J]. J. Hazard. Mater., 2010, 175: 823
[39] Lin K H, Chiang H L. Liquid oil and residual characteristics of printed circuit board recycle by pyrolysis [J]. J. Hazard. Mater., 2014, 271: 258
[40] Hall W J, Williams P T. Separation and recovery of materials from scrap printed circuit boards [J]. Resour., Conserv. Recycl., 2007, 51: 691
[41] Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46: 2817
[42] Yan N, Wang W L, Luo S B, et al. Correlated process of phase separation and microstructure evolution of ternary Co-Cu-Pb alloy [J]. Appl. Phys., 2013, 113A: 763
[43] Yan N, Wang W L, Wei B. Complex phase separation of ternary Co-Cu-Pb alloy under containerless processing condition [J]. J. Alloys Compd., 2013, 558: 109
[44] Onderka B, Jendrzejczyk-Handzlik D, Fitzner K. Thermodynamic properties and phase equilibria in the ternary Cu-Pb-Fe system [J]. Arch. Metall. Mater., 2013, 58: 541
[45] He J, Mattern N, Kaban I, et al. Enhancement of glass-forming ability and mechanical behavior of zirconium-lanthanide two-phase bulk metallic glasses [J]. J. Alloys Compd., 2015, 618: 795
[46] Wang Z Y, He J, Yang B J, et al. Effect of addition of elements on two-glass-forming ability of Zr-Ce-Co-Cu immiscible alloys [J]. Mater. Sci. Technol., 2017, 33: 1926
[47] Wang Z Y, He J, Yang B J, et al. Liquid-liquid phase separation and formation of two glassy phases in Zr-Ce-Co-Cu immiscible alloys [J]. Acta Metall. Sin., 2016, 52: 1379
[47] (王中原, 何 杰, 杨柏俊等. Zr-Ce-Co-Cu难混溶合金的液-液相分离和双非晶相形成 [J]. 金属学报, 2016, 52: 1379)
[48] Lu X, Nakajima K, Sakanakura H, et al. Thermodynamic estimation of minor element distribution between immiscible liquids in Fe-Cu-based metal phase generated in melting treatment of municipal solid wastes [J]. Waste Manag., 2012, 32: 1148
[49] Yang Y H, Song B, Song G Y, et al. Enriching and separating primary copper impurity from Pb-3 mass pct Cu melt by super-gravity technology [J]. Metall. Mater. Trans., 2016, 47B: 2714
[50] Ratke L, Voorhees P W. Growth and Coarsening: Ostwald Ripening in Material Processing [M]. Berlin, Heidelberg: Springer, 2002: 242
[1] 孙小钧, 何杰, 陈斌, 赵九洲, 江鸿翔, 张丽丽, 郝红日. Fe含量对Zr60Cu40-xFex相分离非晶合金组织结构、电阻性能和纳米压痕行为的影响[J]. 金属学报, 2021, 57(5): 675-683.
[2] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[3] 张林,满田囡,王恩刚. 弥散固态颗粒对Al-Bi合金液-液相分离过程的影响[J]. 金属学报, 2019, 55(3): 399-409.
[4] 王中原,何杰,杨柏俊,江鸿翔,赵九洲,王同敏,郝红日. Zr-Ce-Co-Cu难混溶合金的液-液相分离和双非晶相形成*[J]. 金属学报, 2016, 52(11): 1379-1387.
[5] 杨志增, 孙倩, 赵九洲. Al-Bi偏晶点成分合金定向凝固过程研究*[J]. 金属学报, 2014, 50(1): 25-31.
[6] 张俊芳,王予津,卢温泉,张曙光,李建国. Al70Bi11Sn19合金颗粒的核壳组织[J]. 金属学报, 2013, 29(4): 457-463.
[7] 何杰 李海泉 兴成尧 赵九洲. 原位富Pb粒子/铝基金属玻璃基体复合材料的设计与制备[J]. 金属学报, 2010, 46(1): 41-46.
[8] 何杰; 赵九洲; 王晓峰; 李中原 . Al--Bi难混溶合金快速连续凝固的实验研究[J]. 金属学报, 2006, 42(1): 67-72 .
[9] 郭景杰; 刘源; 贾均; 苏彦庆; 丁宏升 . 过偏晶合金快速凝固过程中第二相液滴在液-液相变区内的粗化[J]. 金属学报, 2001, 37(4): 363-368 .