|
|
Ag-Ni偏晶合金凝固过程研究 |
邓聪坤1,2,江鸿翔1,赵九洲1( ),何杰1,赵雷3 |
1. 中国科学院金属研究所 沈阳 110016 2. 中国科学院大学 北京 100049 3. 辽宁石油化工大学机械工程学院 抚顺 113001 |
|
Study on the Solidification of Ag-Ni Monotectic Alloy |
DENG Congkun1,2,JIANG Hongxiang1,ZHAO Jiuzhou1( ),HE Jie1,ZHAO Lei3 |
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2. University of Chinese Academy of Sciences, Beijing 100049, China 3. School of Mechanical Engineering, Liaoning Shihua University, Fushun 113001, China |
引用本文:
邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
Congkun DENG,
Hongxiang JIANG,
Jiuzhou ZHAO,
Jie HE,
Lei ZHAO.
Study on the Solidification of Ag-Ni Monotectic Alloy[J]. Acta Metall Sin, 2020, 56(2): 212-220.
[1] | Li W S, Li Y M, Zhang J, et al. Progress in the research and application of silver-based electrical contact materials [J]. Mater. Rev., 2011, 25(6): 34 | [1] | (李文生, 李亚明, 张 杰等. 银基电接触材料的应用研究及制备工艺 [J]. 材料导报, 2011, 25(6): 34) | [2] | Huang G L, Yan X F, Li G W, et al. Preparation and performance analysis of AgNi(10) electrical contact material by chemical co-deposition [J]. Electr. Eng. Mater., 2010, (1): 12 | [2] | (黄光临, 颜小芳, 李国伟等. 化学共沉积AgNi(10)电触点材料的制备及性能分析 [J]. 电工材料, 2010, (1): 12) | [3] | Rajkumar V B, Chen S W. Thermodynamic modeling of Ag-Ni system combining experiments and molecular dynamic simulation [J]. J. Electron. Mater., 2017, 46: 2282 | [4] | Zhao J Z, Jiang H X. Progress in the solidification of monotectic alloys [J]. Acta Metall. Sin., 2018, 54: 682 | [4] | (赵九洲, 江鸿翔. 偏晶合金凝固过程研究进展 [J]. 金属学报, 2018, 54: 682) | [5] | Wang S B, Xie M, Liu M M, et al. Research progress of AgNi contact materials [J]. Rare Met. Mater. Eng., 2013, 42: 875 | [5] | (王塞北, 谢 明, 刘满门等. AgNi电触头材料研究进展 [J]. 稀有金属材料与工程, 2013, 42: 875) | [6] | Jiang D Z, Zhang J, Bai Y L, et al. Application performance and preparation technology of AgNi contact materials [J]. Electr. Eng. Mater., 2014, (3): 19 | [6] | (蒋德志, 章 杰, 白娅玲等. AgNi触头材料应用性能及其主要制备工艺 [J]. 电工材料, 2014, (3): 19) | [7] | Qin G Y, Wang J H, Zhao H Z, et al. Rapid solidification texture of Ag-Ni and Ag-Fe powders by ultrasonic arc spray [J]. Chin. J. Nonferrous Met., 2009, 19: 286 | [7] | (秦国义, 王剑华, 赵怀志等. 超音速电弧喷雾Ag-Ni、Ag-Fe粉末的快速凝固组织特征 [J]. 中国有色金属学报, 2009, 19: 286) | [8] | Liu N, Liu F, Chen Z, et al. Liquid-phase separation in rapid solidification of undercooled Fe-Co-Cu melts [J]. J. Mater. Sci. Technol., 2012, 28: 622 | [9] | Dai R R, Zhang S G, Guo X, et al. Formation of core-type microstructure in Al-Bi monotectic alloys [J]. Mater. Lett., 2011, 65: 322 | [10] | Huang Q, Luo X H, Li Y Y. An alloy solidification experiment conducted on Shenzhou spacecraft [J]. Adv. Space Res., 2005, 36: 86 | [11] | He J, Mattern N, Tan J, et al. A bridge from monotectic alloys to liquid-phase-separated bulk metallic glasses: Design, microstructure and phase evolution [J]. Acta Mater., 2013, 61: 2102 | [12] | Zhu D Y, Yang X H, Han X J, et al. Rapid solidification microstructures of Fe-Sn monotectic alloys at deep undercooling [J]. Chin. J. Nonferrous Met., 2003, 13: 328 | [12] | (朱定一, 杨晓华, 韩秀君等. Fe-Sn偏晶合金的深过冷快速凝固组织 [J]. 中国有色金属学报, 2003, 13: 328) | [13] | Yan N, Wang W L, Dai F P, et al. Microstructure formation mechanism of rapidly solidified ternary Co-Cu-Pb monotectic alloys [J]. Acta Phys. Sin., 2011, 60: 36402 | [13] | (闫 娜, 王伟丽, 代富平等. 三元Co-Cu-Pb偏晶合金的快速凝固组织形成规律研究 [J]. 物理学报, 2011, 60: 36402) | [14] | He J, Zhao J Z, Ratke L. Solidification microstructure and dynamics of metastable phase transformation in undercooled liquid Cu-Fe alloys [J]. Acta Mater., 2006, 54: 1749 | [15] | Silva A P, Spinelli J E, Garcia A. Thermal parameters and microstructure during transient directional solidification of a monotectic Al-Bi alloy [J]. J. Alloys Compd., 2009, 475: 347 | [16] | Wang J, Zhong Y B, Ren W L, et al. Effect of high static magnetic field and AC current on solidification of Zn-30wt%Bi monotectic alloy [J]. Acta Phys. Sin., 2009, 58: 893 | [16] | (王 江, 钟云波, 任维丽等. 强磁场复合交变电流作用下Zn-30wt%Bi偏晶合金的凝固 [J]. 物理学报, 2009, 58: 893) | [17] | Jiang H X, Zhao J Z, Wang C P, et al. Effect of electric current pulses on solidification of immiscible alloys [J]. Mater. Lett., 2014, 132: 66 | [18] | Zhang L, Wang E G, Zuo X W, et al. Effect of high magnetic field on the transition behavior of Cu-rich particles in Cu-80%Pb hypermonotectic alloy [J]. Acta Metall. Sin., 2010, 46: 423 | [18] | (张 林, 王恩刚, 左小伟等. 强磁场对Cu-80%Pb过偏晶合金中富Cu颗粒迁移行为的影响 [J]. 金属学报, 2010, 46: 423) | [19] | Sun Q, Jiang H X, Zhao J Z. Effect of micro-alloying element Bi on solidification and microstructure of Al-Pb alloy [J]. Acta Metall. Sin., 2016, 52: 497 | [19] | (孙 倩, 江鸿翔, 赵九洲. 微量元素Bi对Al-Pb合金凝固过程及显微组织的影响 [J]. 金属学报, 2016, 52: 497) | [20] | Shi R P, Wang C P, Wheeler D, et al. Formation mechanisms of self-organized core/shell and core/shell/corona microstructures in liquid droplets of immiscible alloys [J]. Acta Mater., 2013, 61: 1229 | [21] | Wang C P, Liu X J, Shi R P, et al. Design and formation mechanism of self-organized core/shell structure composite powder in immiscible liquid system [J]. Appl. Phys. Lett., 2007, 91: 141904 | [22] | Li H L, Zhao J Z. Convective effect on the microstructure evolution during a liquid-liquid decomposition [J]. Appl. Phys. Lett., 2008, 92: 241902 | [23] | Guo J J, Liu Y, Jia J, et al. Coarsening mode and microstructure evolution of Al-In hypermonotectic alloy during rapidly cooling process [J]. Scr. Mater., 2001, 45: 1197 | [24] | Zhou F M, Sun D K, Zhu M F. Lattice Boltzmann modelling of liquid-liquid phase separation of monotectic alloys [J]. Acta Phys. Sin., 2010, 59: 3394 | [24] | (周丰茂, 孙东科, 朱鸣芳. 偏晶合金液-液相分离的格子玻尔兹曼方法模拟 [J]. 物理学报, 2010, 59: 3394) | [25] | Zhao J Z, Ratke L, Jia J, et al. Modeling and simulation of the microstructure evolution during a cooling of immiscible alloys in the miscibility gap [J]. J. Mater. Sci. Technol., 2002, 18: 197 | [26] | Zhao J Z, Li H L, Zhang X F, et al. Microstructure evolution during a liquid-liquid decomposition under the common action of the nucleation, growth and Ostwald ripening of droplets [J]. Int. J. Mater. Res., 2009, 100: 46 | [27] | Lv L X, Zhen L, Xu C Y, et al. Phase field simulation of spinodal decomposition under external magnetic field [J]. J. Magn. Magn. Mater., 2010, 322: 978 | [28] | Jiang H X, Zhao J Z, He J. Solidification behavior of immiscible alloys under the effect of a direct current [J]. J. Mater. Sci. Technol., 2014, 30: 1027 | [29] | Ratke L, Diefenbach S. Liquid immiscible alloys [J]. Mater. Sci. Eng., 1995, R15: 263 | [30] | Patankar S V, translated by Zhang Z. Numerical Heat Transfer and Fluid Flow [M]. Beijing: Science Press, 1984: 27 | [30] | (Patankar S V著, 张 政译. 传热与流体流动的数值计算 [M]. 北京: 科学出版社, 1984: 27) | [31] | Gale W F, Totemeier T C. Smithells Metals Reference Book [M]. 8th Ed., The Netherlands: Elsevier Butterworth-Heinemann, 2004: 1127 | [32] | Iida T, Guthrie R I L, translated by Xian A P, Wang L W. The Physical Properties of Liquid Metals [M]. Beijing: Science Press, 2006: 234 | [32] | (Iida T, Guthrie R I L著, 冼爱平, 王连文译. 液态金属的物理性能 [M]. 北京: 科学出版社, 2006: 234) | [33] | Yang Z Z, Sun Q, Zhao J Z. Directional solidification of monotectic composition Al-Bi alloy [J]. Acta Metall. Sin., 2014, 50: 25 | [33] | (杨志增, 孙 倩, 赵九洲. Al-Bi偏晶点成分合金定向凝固过程研究 [J]. 金属学报, 2014, 50: 25) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|