Please wait a minute...
金属学报  2022, Vol. 58 Issue (2): 155-164    DOI: 10.11900/0412.1961.2020.00500
  研究论文 本期目录 | 过刊浏览 |
基于纳米压痕逆算法的热冲压马氏体/贝氏体双相组织的微观力学性能
朱彬, 杨兰, 刘勇(), 张宜生
华中科技大学 材料科学与工程学院 材料成形与模具技术国家重点实验室 武汉 430074
Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation
ZHU Bin, YANG Lan, LIU Yong(), ZHANG Yisheng
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
引用本文:

朱彬, 杨兰, 刘勇, 张宜生. 基于纳米压痕逆算法的热冲压马氏体/贝氏体双相组织的微观力学性能[J]. 金属学报, 2022, 58(2): 155-164.
Bin ZHU, Lan YANG, Yong LIU, Yisheng ZHANG. Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation[J]. Acta Metall Sin, 2022, 58(2): 155-164.

全文: PDF(2488 KB)   HTML
摘要: 

为研究高强度钢热冲压后微观组织(尤其是多相微观组织)的力学性能及本构关系,首先通过控制冲压时的模具温度和保压时间获得包含全马氏体、全贝氏体以及马氏体/贝氏体混合组织的试件。然后利用纳米压痕实验获得不同微观组织的载荷-位移曲线,并采用纳米压痕逆算法进行量纲分析计算出上述微观组织的弹性模量、屈服强度、应变硬化指数等力学性能参数,获得不同组织的弹塑性幂强化本构模型。最后通过对应纳米压痕实验过程的有限元模拟,对所获得的本构模型进行校验。结果表明,采用逆算法求得的本构模型可以准确地描述高强度钢热冲压后主要微观组织的力学性能。

关键词 纳米压痕逆算法热冲压马氏体贝氏体微观力学性能    
Abstract

Lightweight automobiles have a lower impact on the environment and save energy; therefore, they have become a focus within the automobile industry. Hot stamping parts made of high-strength steel have been widely used in car bodies. To study the mechanical properties and constitutive model of high-strength steel after hot stamping, the samples containing full martensite, full bainite, and martensite/bainite dual phases structure were obtained by controlling the tool's temperature and holding time during hot stamping. Then the load-displacement curves of different microstructures were obtained using nanoindentation tests. Subsequently, the modulus of elasticity, yield stress, strain hardening exponent, and other mechanical properties of these microstructures were calculated by reverse algorithms using dimensional analysis. Further, the power-law elastoplastic constitutive models of different microstructures were derived using these parameters. The errors of yield strength obtained using the reverse algorithm and tensile tests in full martensite and full bainite samples are -1.15% and 3.38%, respectively. The yield strength of the martensitic/bainite sample obtained using the reverse algorithm is 16.62%, 24.17%, and -11.78% different from that obtained by the tensile test, showing that the mechanical properties are different under macroscopic and microscopic conditions to some extent. Simultaneously, the average yield strength of the three points is only -1.41% different from that obtained using the tensile test. Finally, the derived constitutive models were verified by simulating the finite element nanoindentation. The results show that the constitutive model obtained using the inverse algorithm can accurately describe the mechanical properties of the main microstructures of high-strength steel after hot stamping.

Key wordsnanoindentation    inverse algorithm    hot stamping    martensite    bainite    micromechanical property
收稿日期: 2020-12-14     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目(U1760205)
作者简介: 朱 彬,男,1983年生,副教授,博士
图1  实验流程示意图
图2  不同模具温度和保压时间条件下试样的冷却曲线
图3  不同模具温度和保压时间条件下试样微观组织的SEM像(a) cold tool, 30 s(b) 400oC, 30 s(c) 450oC, 240 s
图4  3个代表性纳米压痕点(1~3号)的载荷-位移曲线
图5  3个压痕点显微组织的SEM像(a) No.1 (b) No.2 (c) No.3
图6  纳米压痕实验获得的载荷-位移曲线
IndentationE / GPaσy / MPan
No.1212.69770.20.098
No.2215.9611470.102
No.3211.58814.90.104
表1  逆算法计算结果
图7  模温400℃、保压30 s试件的应力-应变曲线及该条件下逆算法计算的3个压痕处的应力-应变曲线
图8  全马氏体、全贝氏体试样应力-应变曲线与纳米压痕逆算法获得的同组织应力-应变曲线
图9  纳米压痕仿真模型
图10  模拟过程中应力分布图(a) start loading(b) maximum loading(c) completely unloading
图11  不同压痕点位置的载荷-位移曲线(a) No.1 (b) No.2 (c) No.3
1 Liu Y , Zhu B , Wang K , et al . Friction behaviors of 6061 aluminum alloy sheets in hot stamping under dry and lubricated conditions based on hot strip drawing test [J]. Tribol. Int., 2020, 151: 106504
2 Yi H L , Chang Z Y , Cai H L , et al . Strength, ductility and fracture strain of press-hardening steels [J]. Acta Metall. Sin., 2020, 56: 429
2 易红亮, 常智渊, 才贺龙 等 . 热冲压成形钢的强度与塑性及断裂应变 [J]. 金属学报, 2020, 56: 429
3 Zhong Q , Shi Y , Liu B . Application of aluminum alloy in automobile lightweight [J]. Adv. Mater. Ind., 2015, (2): 23
3 钟 奇, 施 毅, 刘 博 . 铝合金在汽车轻量化中的应用 [J]. 新材料产业, 2015, (2): 23
4 Tong K , Han X H , Cui Z S . Thermal deformation constitutive relationship of new type high strength hot stamping steel 22MnB5(Nb&V) [J]. J. Plast. Eng., 2019, 26(6): 256
4 童 坤, 韩先洪, 崔振山 . 新型热冲压高强钢22MnB5 (Nb&V)的热变形本构关系 [J]. 塑性工程学报, 2019, 26(6): 256
5 Zhang S , Yang D B . Study on microstructure and properties of hot stamping high strength steel sheet for automobile [J]. Hot Work. Tech., 2019, 48(7): 145
5 张 帅, 杨德斌 . 热冲压成形汽车用高强钢板的组织与性能研究 [J]. 热加工工艺, 2019, 48(7): 145
6 Zhu B , Xu Z Q , Wang K , et al . Nondestructive evaluation of hot stamping boron steel with martensite/bainite mixed microstructures based on magnetic Barkhausen noise detection [J]. J. Magn. Magn. Mater., 2020, 503: 166598
7 Karbasian H , Tekkaya A E . A review on hot stamping [J]. J. Mater. Process. Technol., 2010, 210: 2103
8 Hein P , Wilsius J . Status and innovation trends in hot stamping of USIBOR 1500 P [J]. Steel Res. Int., 2008, 79: 85
9 George R , Bardelcik A , Worswick M J . Hot forming of boron steels using heated and cooled tooling for tailored properties [J]. J. Mater. Process. Technol., 2012, 212: 2386
10 Mori K , Abe Y , Osakada K , et al . Plate forging of tailored blanks having local thickening for deep drawing of square cups [J]. J. Mater. Process. Technol., 2011, 211: 1569
11 Chan S M , Chan L C , Lee T C . Tailor-welded blanks of different thickness ratios effects on forming limit diagrams [J]. J. Mater. Process. Technol., 2003, 132: 95
12 Mori K , Maeno T , Mongkolkaji K . Tailored die quenching of steel parts having strength distribution using bypass resistance heating in hot stamping [J]. J. Mater. Process. Technol., 2013, 213: 508
13 Oliver W C , Pharr G M . An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. J. Mater. Res., 1992, 7: 1564
14 Li W L , Liu W W , Qi F , et al . Determination of micro-mechanical properties of additive manufactured alumina ceramics by nanoindentation and scratching [J] Ceram. Int., 2019, 45: 10612
15 Wang H D , Ma Y , Peng G J , et al . Evaluation of subsurface damage layer of BK7 glass via cross-sectional surface nanoindentation [J]. Precis. Eng., 2021, 67: 293
16 Kim J J , Rahman M K , Taha M M R . Examining microstructural composition of hardened cement paste cured under high temperature and pressure using nanoindentation and 29Si MAS NMR [J]. Appl. Nanosci., 2012, 2: 445
17 Nguyen N V , Pham T H , Kim S E . Characterization of strain rate effects on the plastic properties of structural steel using nanoindentation [J]. Constr. Build. Mater., 2018, 163: 305
18 Pham T H , Nguyen N V . Mechanical properties of constituent phases in structural steels and heat-affected zones investigated by statistical nanoindentation analysis [J]. Constr. Build. Mater., 2021, 268: 121211
19 Dao M , Chollacoop N , Van Vliet K J , et al . Computational modeling of the forward and reverse problems in instrumented sharp indentation [J]. Acta Mater., 2001, 49: 3899
20 Zhu Z J . Effect of duplex microstructure of martensite/bainite on mechanical properties for hot stamped TTP parts [D]. Wuhan: Huazhong University of Science and Technology, 2019
20 朱周杰 . 热冲压TTP零件马氏体/贝氏体双相组织微观结构对力学性能的影响 [D]. 武汉: 华中科技大学, 2019
21 ISO . Metallic materials-instrumented indentation test for hardness and materials parameters [S]. Geneva: International Standards Association.
22 Guo D Z , Lin X , Zhao Y Q , et al . Application of nanoindentation in the research of materials [J]. Mater. Rep., 2011, 25(13): 10
22 郭荻子, 林 鑫, 赵永庆 等 . 纳米压痕方法在材料研究中的应用 [J]. 材料导报, 2011, 25(13): 10
23 Yan P . Research on the measurement method of constitutive relationship inversion of elastoplastic materials based on Nano indentation technology [D]. Xi'an: Xi'an University of Technology, 2019
23 闫 鹏 . 基于纳米压痕技术的弹塑性材料本构关系反演测量方法研究 [D]. 西安: 西安理工大学, 2019
24 Wang F J . Study on mechanical properties and size effects of lead-free BGA solder joint by nanoindentation [D]. Harbin: Harbin Institute of Technology, 2006
24 王凤江 . 基于纳米压痕法的无铅BGA焊点力学性能及其尺寸效应研究 [D]. 哈尔滨: 哈尔滨工业大学, 2006
25 King R B . Elastic analysis of some punch problems for a layered medium [J]. Int. J. Solids Struct., 1987, 23: 1657
26 Guo X G , Liu Z Y , Gao H , et al . Simulation research of nanoindentation on the (001) face of KDP crystal [J]. J. Syn. Cryst., 2015, 44: 1149
26 郭晓光, 刘子源, 高 航 等 . KDP晶体(001)晶面纳米压痕的仿真研究 [J]. 人工晶体学报, 2015, 44: 1149
27 Zhang K H , Wen D H , Hong T , et al . Nanoindentation experiment and finite element simulation for sapphire [J]. Aviat. Precis. Manuf. Technol., 2009, 45(2): 7
27 张克华, 文东辉, 洪 滔 等 . 蓝宝石的纳米压痕试验与有限元仿真研究 [J]. 航空精密制造技术, 2009, 45(2): 7
28 Basantia S K , Prusty P K , Das D , et al . Micro-scale simulation of nanoindentation characteristics in dual-phase steel [J]. Mater. Today Proc., 2020, 33: 5055
[1] 王周头, 袁清, 张庆枭, 刘升, 徐光. 冷轧中碳梯度马氏体钢的组织与力学性能[J]. 金属学报, 2023, 59(6): 821-828.
[2] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[3] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[4] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[5] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[6] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[7] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[8] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[9] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[10] 陈维, 陈洪灿, 王晨充, 徐伟, 罗群, 李谦, 周国治. Fe-C-Ni体系膨胀应变能对马氏体转变的影响[J]. 金属学报, 2022, 58(2): 175-183.
[11] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[12] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[13] 朱东明, 何江里, 史根豪, 王青峰. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响[J]. 金属学报, 2022, 58(12): 1581-1588.
[14] 韩汝洋, 杨庚蔚, 孙新军, 赵刚, 梁小凯, 朱晓翔. 钒微合金化中锰马氏体耐磨钢奥氏体晶粒长大行为[J]. 金属学报, 2022, 58(12): 1589-1599.
[15] 陈胜虎, 戎利建. 超细晶铁素体-马氏体钢的高温氧化成膜特性及其对Pb-Bi腐蚀行为的影响[J]. 金属学报, 2021, 57(8): 989-999.