Please wait a minute...
金属学报  2020, Vol. 56 Issue (9): 1206-1216    DOI: 10.11900/0412.1961.2020.00052
  本期目录 | 过刊浏览 |
应用稀土氧化物冶金技术改善高强钢焊接性能
陆斌1,2,3, 陈芙蓉1(), 智建国2,3, 耿如明4
1 内蒙古工业大学材料科学与工程学院 呼和浩特 010051
2 内蒙古包钢钢联股份有限公司 包头 014010
3 内蒙古自治区稀土钢产品研发企业重点实验室 包头 014010
4 北京科技大学钢铁冶金新技术国家重点实验室 北京 100083
Enhanced Welding Properties of High Strength Steel via Rare Earth Oxide Metallurgy Technology
LU Bin1,2,3, CHEN Furong1(), ZHI Jianguo2,3, GENG Ruming4
1 School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
2 Inner Mongolia Baotou Steel Union Co. , Ltd. , Baotou 014010, China
3 Inner Mongolia Enterprise Key Laboratory of Rare Earth Steel Products Research and Development, Baotou 014010, China
4 State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

陆斌, 陈芙蓉, 智建国, 耿如明. 应用稀土氧化物冶金技术改善高强钢焊接性能[J]. 金属学报, 2020, 56(9): 1206-1216.
Bin LU, Furong CHEN, Jianguo ZHI, Ruming GENG. Enhanced Welding Properties of High Strength Steel via Rare Earth Oxide Metallurgy Technology[J]. Acta Metall Sin, 2020, 56(9): 1206-1216.

全文: PDF(4358 KB)   HTML
摘要: 

在高强钢中加入5×10-6和23×10-6稀土Ce,研究了Ce对焊接热影响区冲击韧性、微观组织、原奥氏体晶粒以及焊接接头断口形貌的影响与机理。钢中含Ce量为5×10-6时,能在镁铝夹杂物外围生成少量CeAlO3夹杂物,但不能完全改性镁铝夹杂物,当Ce添加量达到23×10-6后,Ce能够完全改性MgO-Al2O3尖晶石,生成(CeCa)S+MgO-Al2O3+MnS稀土夹杂物。对含有Ce的高强钢板进行模拟焊接,结果表明,在4组不同焊接热输入条件下,钢中加入23×10-6Ce后,比钢中加入5×10-6Ce的钢焊接热影响区的Charpy冲击功有所提高。微观组织分析发现,23×10-6Ce含量的高强钢试样焊接热影响区断口形貌呈现韧窝状,韧性更好;当热输入从25 kJ/cm逐步提高到100 kJ/cm时,含5×10-6Ce的高强钢热影响区原奥氏体晶粒平均尺寸增加了75.6%;含23×10-6Ce的高强钢的原奥氏体晶粒平均尺寸增加了52.4%,即钢中Ce含量的增加抑制了焊接热影响区原奥氏体晶粒的长大。通过微观组织分析对比,说明稀土Ce在高强钢中起到了延迟焊接热影响区上贝氏体组织形成的作用,同时抑制焊接过程中原奥氏体晶粒的长大。利用高温共聚焦显微镜观察到了稀土夹杂物钉扎于原奥氏体晶界,抑制焊接过程中晶粒的长大,验证了稀土Ce对高强钢焊接热影响区性能改善的机理。本工作表明应用稀土氧化物冶金可以改善稀土高强钢的焊接性能。

关键词 高强钢热影响区氧化物冶金稀土    
Abstract

With the increase of the strength of steel plate, the welding performance of the steel decreases sharply and the welding crack susceptibility increases. The properties of welding heat-affected zone of high strength steel lower with increasing the welding heat input. The present work aims to improve the toughness of welding heat-affected zone by rare earth oxide metallurgy technology. The effect of 5×10-6 and 23×10-6 rare earth Ce on the impact toughness, microstructure, austenite grains of heat-affected zone and fracture morphology of welded joint were studied. When the steel contains 5×10-6 rare earth Ce, the inclusions are MgO-Al2O3 spinels surrounded with a small amount of CeAlO3 inclusions. In the case of the steel with 23×10-6Ce, Ce can completely modify MgO-Al2O3 inclusions, resulting in the formation of (CeCa)S+MgO-Al2O3+MnS complex inclusions. The simulation welding of high strength steel was performed. The results show that the Charpy impact energy of heat-affected zone of the steel with 23×10-6Ce is higher at four different heat inputs, in comparison with the steel with 5×10-6Ce. The microstructure analysis shows that the fracture morphology of heat-affected zone of the steel with 23×10-6Ce appears dimples, which is an indication of a higher toughness. With increasing the heat input from 25 kJ/cm to 100 kJ/cm, the average grain size of the original austenite in the heat-affected zones of the steels with 5×10-6Ce and 23×10-6Ce was increased by 75.6% and 52.4%, respectively. It indicates that the growth of the original austenite grain during welding is suppressed with increasing the Ce content in the steel. Comparison of the microstructure shows that rare earth Ce can delay the formation of upper bainite structure in the heat-affected zone. Through the high temperature confocal microscope, it was observed that the rare earth inclusions pinned on the original austenite grain boundary, which can effectively restrain the grain growth during the welding process. It provides an evidence showing the mechanism of improvement in the heat-affected zone in the welding of the high strength steel by rare earth Ce. The present study demonstrates the rare earth oxide metallurgy can improve the weldability of the high strength steel.

Key wordshigh strength steel    heat-affected zone (HAZ)    oxide metallurgy    rare earth
收稿日期: 2020-02-18     
ZTFLH:  TG457.11  
作者简介: 陆 斌,男,1977年生,高级工程师,博士生
SteelCSiMnPSAlNbVTiCaMgCrMoCeFe
5Ce0.120.331.620.0140.00200.0260.0460.0690.0170.00140.00040.2600.1150.0005Bal.
23Ce0.110.311.620.0150.00200.0250.0460.0660.0170.00070.00050.2700.1220.0023Bal.
表1  不同Ce含量高强钢的化学成分 (mass fraction / %)
图1  5Ce试样中典型夹杂物MgO-Al2O3+(CaMn)S+CeAlO3的SEM像和EDS分析Color online
SteelReL / MPaRm / MPaA / %AKV / J
5Ce78281215.5148
23Ce79483817.0212
表2  不同Ce含量高强钢的力学性能
图2  23Ce试样中典型夹杂物(CeCa)S+MgO-Al2O3+MnS的SEM像和EDS分析Color online

Heat input

kJ·cm-1

Peak temp.

Holding time

s

t8/5

s

Cooling rate

℃·s-1

25135011816.67
5013501744.05
75135011651.82
100135012951.02
表3  热模拟焊接参数
图3  热影响区(HAZ)焊接热模拟过程
图4  不同热输入条件下的焊接热影响区室温冲击功
图5  5Ce试样不同焊接热输入下热影响区显微组织的OM像
图6  23Ce试样不同焊接热输入下热影响区显微组织的OM像
图7  5Ce试样不同焊接热输入下断口形貌的SEM像
图8  23Ce试样不同焊接热输入下断口形貌的SEM像
图9  5Ce试样不同焊接热输入下热影响区原奥氏体晶粒形貌的OM像
Steel25 kJ·cm-150 kJ·cm-175 kJ·cm-1100 kJ·cm-1
5Ce40.259.966.970.6
23Ce47.349.350.272.1
表4  不同热输入条件下的焊接热影响区的原奥氏体晶粒尺寸 (μm)
图10  23Ce试样不同焊接热输入下热影响区原奥氏体晶粒形貌的OM像
图11  23Ce试样高温共聚焦观察实验结果Color online(a) 987.2 s, 1488.5 ℃;(b) 1012.7 s, 1484.0 ℃;(c) 1023.9 s, 1488.5 ℃;(d) 1030.1 s, 1482.0 ℃;(e) 1067.8 s, 1475.6 ℃;(f) 1202.4 s, 1453.0 ℃
Temperature / ℃25 kJ·cm-150 kJ·cm-175 kJ·cm-1100 kJ·cm-1
>9308.5124.9352.0790.93
>10006.9719.5741.1170.57
>11005.1014.0828.2248.08
>12003.469.0817.7230.58
>13001.863.588.2214.08
表5  不同焊接热输入时23Ce试样在不同温度持续时间 (s)
图12  23Ce试样电解后夹杂物SEM像及EDS分析Color online(a~c) MgO-Al2O3;(d) Al2O3
图13  23Ce试样电解后碳氮化物的SEM像和EDS(a, b) Ti-carbonitride;(c) Mo-carbonitride;(d) Cr-carbonitride
图14  23Ce试样电解后含稀土夹杂物SEM像及EDS分析Color online(a) backscatter mode;(b) secondary electronic mode
[1] Kanazawa S, Nakashima A, Okamoto K, et al. Improved toughness of weld fussion zone by fine TiN particles and development of a steel for large heat input welding [J]. Tetsu Hagané, 1975, 61: 2589
[1] (金沢 正午, 中島 明, 岡本 健太郎等. 微細TiNによる溶接ボンド部靱性の改善と大入熱溶接用鋼の開発 [J]. 鉄と鋼, 1975, 61: 2589)
[2] Kasamatsu Y, Takashima S, Hosoya T. Effect of titanium and nitrogen on toughness of heat-affected zone of steel plate with tensile strength of 50 kg/mm2 in high heat input welding [J]. Tetsu Hagané, 1979, 65: 1232
[2] (笠松 裕, 高嶋 修嗣, 細谷 隆司. 50 kg/mm2級高張力鋼板の大入熱溶接熱影響部の靱性におよぼすTiおよびN量の影響 [J]. 鉄と鋼, 1979, 65: 1232)
[3] Wen B, Song B, Pan N, et al. Effect of austenitizing temperature on microstructure in 16Mn steel treated by cerium [J]. Int. J. Miner. Metall. Mater, 2011, 18: 652
[4] Yamamoto K, Hasegawa T, Takamura J. Effect of B on the intra-granular ferrite formation in Ti-oxides bearing steels [J]. Tetsu Hagané, 1993, 79: 1169
[4] (山本 広一, 長谷川 俊永, 高村 仁一. 含Tiオキサイド鋼における粒内フェライト変態におよぼすBの効果 [J]. 鉄と鋼, 1993, 79: 1169)
[5] Kojima A, Kiyose A, Uemori R, et al. Super high HAZ toughness technology with fine microstructure imparted by fine particles [J]. Nippon Steel Tech. Rep., 2004, 380: 2
[6] Minagawa M, Ishida K, Funatsu Y, et al. 390 MPa yield strength steel plate for large heat-input welding for large container ships [J]. Nippon Steel Tech. Rep., 2004, 380: 6
[7] Kojima A, Yoshii K I, Hada T, et al. Development of high HAZ toughness steel plates for box columns with high heat input welding [J]. Nippon Steel Tech. Rep., 2004, 380: 33
[8] Tomita Y, Okawa T. Effect of modified heat-treatment on mechanical properties of 300M steel [J]. Mater. Sci. Technol., 1995, 11: 245
doi: 10.1179/mst.1995.11.3.245
[9] Yang J, Xu L Y, Zhu K, et al. Improvement of HAZ toughness of steel plate for high heat input welding by inclusion control with Mg deoxidation [J]. Steel Res. Int., 2015, 86: 619
doi: 10.1002/srin.v86.6
[10] Lee W S, Su T T. Mechanical properties and microstructural features of AISI 4340 high-strength alloy steel under quenched and tempered conditions [J]. J. Mater. Process. Technol., 1999, 87: 198
doi: 10.1016/S0924-0136(98)00351-3
[11] Youngblood J L, Raghavan M. Correlation of microstructure with mechanical properties of 300M steel [J]. Metall. Trans., 1977, 8A: 1439
[12] Ritchie R O, Francis B, Server W L. Evaluation of toughness in AISI 4340 alloy steel austenitized at low and high temperatures [J]. Metall. Trans., 1976, 7A: 831
[13] Chang T L, Tsay L W, Chen C. Influence of gaseous hydrogen on the notched tensile strength of D6ac steel [J]. Mater. Sci. Eng., 2001, A316: 153
[14] Caballero F G, Bhadeshia H K D H, Mawella K J A, et al. Design of novel high strength bainitic steels: Part 1 [J]. Mater. Sci. Technol., 2001, 17: 512
[15] Caballero F G, Bhadeshia H K D H, Mawella K J A, et al. Design of novel high strength bainitic steels: Part 2 [J]. Mater. Sci. Technol., 2001, 17: 517
[16] Li Y J. Welding of High Strength Steel [M]. Beijing: Metallurgical Industry Press, 2010: 89
[16] (李亚江. 高强钢的焊接 [M]. 北京: 冶金工业出版社, 2010: 89)
[17] Wen T, Hu X F, Song Y Y, et al. Effect of tempering temperature on carbide and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel [J]. Acta Metall. Sin., 2014, 50: 447
[17] (温 涛, 胡小锋, 宋元元等. 回火温度对一种Fe-Cr-Ni-Mo高强钢碳化物及其力学性能的影响 [J]. 金属学报, 2014, 50: 447)
[18] Wen T, Hu X F, Yan D S, et al. Effect of V contents on microstructure and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel [J]. Mater. Sci. Forum, 2014, 788: 304
[19] Wen T, Hu X F, Song Y Y, et al. Carbides and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel with different V contents [J]. Mater. Sci. Eng., 2013, A588: 201
[20] Zhang M, Wang Q, Li J H, et al. Microstructure numerical simulation of weld pool in rapid solidification [J]. Trans. China Weld. Inst., 2013, 34(7): 1
[20] (张 敏, 汪 强, 李继红等. 焊接熔池快速凝固过程的微观组织演化数值模拟 [J]. 焊接学报, 2013, 34(7): 1)
[21] Wang L M. Application of Rare Earth in Low Alloy and Alloy Steel [M]. Beijing: Metallurgical Industry Press, 2016: 39
[21] (王龙妹. 稀土在低合金及合金钢中的应用 [M]. 北京: 冶金工业出版社, 2016: 39)
[22] Wan X L, Wu K M, Wang H H, et al. Applications of oxide metallurgy technology on high heat input welding steel [J]. China Metall., 2015, 25(6): 6
[22] (万响亮, 吴开明, 王恒辉等. 氧化物冶金技术在大线能量焊接用钢的应用 [J]. 中国冶金, 2015, 25(6): 6)
[23] Song Y, Wu G P, Wu T L. Application of oxide metallurgy technique in improving microstructure and property of steels [J]. China Metall., 2012, 22(6): 1
[23] (宋 宇, 武国平, 吴天礼. 氧化物冶金技术在改善钢材组织和性能中的应用 [J]. 中国冶金, 2012, 22(6): 1)
[24] Zhou D W, Peng P, Xu S H, et al. Research and application of rare earth in steel [J]. Res. Stud. Foundry Equip., 2004, (3): 35
[24] (周惦武, 彭 平, 徐少华等. 稀土元素在钢中的应用与研究 [J]. 铸造设备研究, 2004, (3): 35)
[25] Chai F, Yang C F, Su H, et al. Effect of magnesium on inclusion formation in Ti-killed steels and microstructural evolution in welding induced coarse-grained heat affected zone [J]. J. Iron Steel Int., 2009, 16: 69
[26] Huang Y, Cheng G G, Li S J, et al. Effect of cerium on the behavior of inclusions in H13 steel [J]. Steel Res. Int., 2018, 89: 1800371
[27] Su D D. Metallography of Steel at elevated temperature [M]. Tianjin: Tianjin University Press, 2007: 1
[27] (苏德达. 钢的高温金相学 [M]. 天津: 天津大学出版社, 2007: 1)
[1] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[2] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] 金鑫焱, 储双杰, 彭俊, 胡广魁. 露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响[J]. 金属学报, 2023, 59(10): 1324-1334.
[4] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[5] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[6] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[7] 刘洁, 徐乐, 史超, 杨少朋, 何肖飞, 王毛球, 时捷. 稀土Ce对非调质钢中硫化物特征及微观组织的影响[J]. 金属学报, 2022, 58(3): 365-374.
[8] 刘仲武, 何家毅. 钕铁硼永磁晶界扩散技术和理论发展的几个问题[J]. 金属学报, 2021, 57(9): 1155-1170.
[9] 王学, 李勇, 王家庆, 胡磊. 高温时效对T23钢粗晶热影响区显微组织及再热裂纹敏感性的影响[J]. 金属学报, 2021, 57(6): 736-748.
[10] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[11] 李金许,王伟,周耀,刘神光,付豪,王正,阚博. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56(4): 444-458.
[12] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[13] 朱健, 张志豪, 谢建新. 基于原位TEM拉伸的稀土H13钢塑性形变行为和断裂机制[J]. 金属学报, 2020, 56(12): 1592-1604.
[14] 马宏驰, 杜翠薇, 刘智勇, 李永, 李晓刚. E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究[J]. 金属学报, 2019, 55(4): 469-479.
[15] 黄宇, 成国光, 李世健, 代卫星. Ce微合金化H13钢中一次碳化物的析出机理及热稳定性研究[J]. 金属学报, 2019, 55(12): 1487-1494.