Please wait a minute...
金属学报  2019, Vol. 55 Issue (12): 1487-1494    DOI: 10.11900/0412.1961.2019.00147
  研究论文 本期目录 | 过刊浏览 |
Ce微合金化H13钢中一次碳化物的析出机理及热稳定性研究
黄宇,成国光(),李世健,代卫星
北京科技大学钢铁冶金新技术国家重点实验室 北京 100083
Precipitation Mechanism and Thermal Stability of Primary Carbide in Ce Microalloyed H13 Steel
HUANG Yu,CHENG Guoguang(),LI Shijian,DAI Weixing
State Key laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(19895 KB)   HTML
摘要: 

系统研究了Ce微合金化H13热作模具钢中一次碳化物的析出机理及热稳定性。首先通过SEM以及夹杂物自动分析系统观察Ce微合金化H13钢中夹杂物的二维形貌、类型、数量及尺寸;进一步利用非水溶液电解法观察Ce微合金化H13钢中一次碳化物的三维形貌;随后在不同的加热温度下保温1 h研究一次碳化物的热稳定性;最后利用Factsage 7.2热力学软件计算一次碳化物的析出机理以及热稳定性。结果表明:Ce能够有效地与钢液中的O、S、P、As元素反应生成对应的夹杂物;一次碳化物的二维形貌为长条状而三维形貌为片状,两者之间差别较大;富Ti、V碳化物首先析出,随后作为富V碳化物的形核核心促进其析出,一次碳化物的三维尺寸达到50 μm;富Ti、V碳化物的热稳定性明显高于富V碳化物,当加热温度达到1250 ℃时,富Ti、V碳化物刚开始溶解但依然存在,而富V碳化物已经完全溶解;经过加热处理后,一次碳化物的三维平均尺寸降低到10 μm左右;Factsage 7.2的理论计算结果与实际观察结果基本一致。较高的加热温度可以一定程度上降低Ce微合金化H13钢中一次碳化物的危害,但不能完全去除。

关键词 H13钢稀土一次碳化物热稳定性析出机理    
Abstract

Ce microalloyed H13 hot die steel is widely used in manufacturing hot extrusion and die casting mold of magnesium-aluminium alloy because of its excellent combination of hot strength and impact toughness. The C content in Ce microalloyed H13 steel is approximately 4% (mass fraction), and the alloy elements content such as Cr, Mo, V et al are about 8%. Therefore, it is easy for primary carbide to precipitate during the solidification of the molten steel due to the segregation of alloy elements. Most researchers study the precipitation mechanism of primary carbide in the two-dimensional perspective. A few people are involved in the three-dimensional morphology of the primary carbide, especially the thermal stability of the primary carbide in the three-dimensional perspective in the Ce microalloyed H13 steel. Therefore, the precipitation mechanism and thermal stability of the primary carbide were systematically studied in this work. First, the SEM and inclusion automatic analysis system were used to analyze the morphology, number density and size of the inclusions in Ce microalloyed H13 steel. The three-dimensional morphology of the primary carbide in sample was observed after electrolyzed in a non-aqueous solution. The voltage was 20 V, the electrolysis time was about 3 min and the electrolyte was composed of 1% tetramethylammonium chloride, 10% acetylacetone, and 89% methanol (volume fraction). Three samples were heated to 1150, 1200 and 1250 ℃ for 1 h to investigate the thermal stability of the primary carbide. Finally, Factsage 7.2 software was used to calculate the precipitation mechanism and thermal stability of the primary carbide. Elemental Ce can effectively react with O, S, P and As elements to form the corresponding Ce-O, Ce-S and Ce-P-As inclusions. There is a huge difference between the two-dimensional and three-dimensional morphologies of the primary carbide, the two-dimensional morphology is strip and the three-dimensional morphology is irregular flake. Ti-V-rich carbide precipitates first, and then acts as the nucleation core of V-rich carbide. When the heating temperature reaches 1250 ℃, the V-rich carbide has completely dissolved, and the Ti-V-rich carbide begins to dissolve. The three-dimensional morphology of the wrapped Ti-V-rich carbide is completely exposed after the V-rich carbide disappears completely. The Ce-O inclusion is formed before solidification, and the primary carbide precipitates at the end of the solidification of molten steel. As the Ce content in molten steel increases, the stability diagram of Ce2O2S and Ce-S increases gradually. The precipitation temperature of Ti-V-rich carbide is approximately 1360 ℃, and the V-rich carbide starts to precipitate at about 1200 ℃. The calculated results are keeping well with the experimental observations. The damage of primary carbide in Ce microalloyed H13 steel can be partly reduced by higher heating temperature, but cannot be completely removed.

Key wordsH13 steel    rare earth    primary carbide    thermal stability    precipitation mechanism
收稿日期: 2019-05-06     
ZTFLH:  TF769.9  
基金资助:国家自然科学基金项目(No.51874034)
通讯作者: 成国光     E-mail: chengguoguang@metall.ustb.edu.cn
Corresponding author: Guoguang CHENG     E-mail: chengguoguang@metall.ustb.edu.cn
作者简介: 黄 宇,男,1992年生,博士

引用本文:

黄宇, 成国光, 李世健, 代卫星. Ce微合金化H13钢中一次碳化物的析出机理及热稳定性研究[J]. 金属学报, 2019, 55(12): 1487-1494.
HUANG Yu, CHENG Guoguang, LI Shijian, DAI Weixing. Precipitation Mechanism and Thermal Stability of Primary Carbide in Ce Microalloyed H13 Steel. Acta Metall Sin, 2019, 55(12): 1487-1494.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00147      或      https://www.ams.org.cn/CN/Y2019/V55/I12/1487

图1  Ce微合金化H13钢中主要夹杂物形貌的SEM像
Primary carbide1~3 μm3~5 μm5~10 μm>10 μmTotal
V-rich3.241.202.321.608.36
Ti-V-rich0.680.080.0400.80
表1  一次碳化物的数量密度 (mm-2)
图 2  富V碳化物的元素组成
图3  富V碳化物的纵横比
图4  一次碳化物的三维形貌
图5  图4a三维一次碳化物的EDS面扫描图
图6  三维一次碳化物的热稳定性
图7  1150、1200和1250 ℃热处理1 h后三维一次碳化物的数量密度和尺寸
图8  热处理后三维一次碳化物的EDS面扫描图
图9  Ce微合金化H13钢的平衡凝固过程
图10  1600 ℃下Fe-C-Cr-Mo-Ce-O-S体系中Ce-O-S的稳定相图
图11  一次碳化物的析出过程
[1] Chang S H, Tang T P, Huang K T. Improvement of aluminum erosion behavior and corrosion resistance of AISI H13 tool steel by oxidation treatment [J]. ISIJ Int., 2010, 50: 569
[2] Maugis P, Gouné M. Kinetics of vanadium carbonitride precipitation in steel: A computer model [J]. Acta Mater., 2005, 53: 3359
[3] Mao M T, Guo H J, Wang F, et al. Effect of cooling rate on the solidification microstructure and characteristics of primary carbides in H13 steel [J]. ISIJ Int., 2019, 59: 848
[4] Ali D, Ali Boutorabi S M, Kheirandish S. Effect of titanium carbide concentration on the morphology of MC carbides in pulsed laser surface alloyed AISI H13 tool steel [J]. Opt. Laser Technol., 2019, 112: 236
[5] Xie Y, Cheng G G, Meng X L, et al. Precipitation behavior of primary precipitates in Ti-microalloyed H13 tool steel [J]. ISIJ Int., 2016, 56: 1996
[6] Jiang Q C, Sui H L, Guan Q F. Thermal fatigue behavior of new type high-Cr cast hot work die steel [J]. ISIJ Int., 2004, 44: 1103
[7] Tang W J, Wu X C. Effect of carbides in 4Cr5MoSiVl steel on thermal fatigue behavior [J]. Heat Treat., 2003, 18: 32
[7] (唐文军, 吴晓春. 4Cr5MoSiV1钢中碳化物对热疲劳性能影响 [J]. 热处理, 2003, 18: 32)
[8] Wang L M, Lin Q, Ji J W, et al. New study concerning development of application of rare earth metals in steels [J]. J. Alloys Compd., 2006, 408-412: 384
[9] Waudby P E. Rare earth additions to steel [J]. Int. Met. Rev., 1978, 23: 74
[10] Yang X H, Wu P F, Wu C C, et al. Behavior of rare earth on modifying inclusion in special steel [J]. J. Chin. Rare Earth Soc., 2010, 28: 612
[10] (杨晓红, 吴鹏飞, 吴铖川等. 特殊钢中稀土变质夹杂物行为研究 [J]. 中国稀土学报, 2010, 28: 612)
[11] Wang L J, Liu Y Q, Wang Q, et al. Evolution mechanisms of MgO·Al2O3 inclusions by cerium in spring steel used in fasteners of high-speed railway [J]. ISIJ Int., 2015, 55: 970
[12] Huang Y, Cheng G G, Xie Y. Modification mechanism of cerium on the inclusions in drill steel [J]. Acta Metall. Sin., 2018, 54: 1253
[12] (黄 宇, 成国光, 谢 有. 稀土Ce对钎具钢中夹杂物的改质机理研究 [J]. 金属学报, 2018, 54: 1253)
[13] Huang Y, Cheng G G, Li S J, et al. Effect of cerium on the behavior of inclusions in H13 steel [J]. Steel Res. Int., 2018, 89: 1800371
[14] Liu H L, Liu C J, Jiang M F. Effect of rare earths on impact toughness of a low-carbon steel [J]. Mater. Des., 2012, 33: 306
[15] Liu X, Yang J C, Yang L, et al. Effect of Ce on inclusions and impact property of 2Cr13 stainless steel [J]. J. Iron Steel Res. Int., 2010, 17: 59
[16] Adabavazeh Z, Hwang W S, Su Y H. Effect of adding cerium on microstructure and morphology of Ce-based inclusions formed in low-carbon steel [J]. Sci. Rep., 2017, 7: 46503
[17] Yan N, Yu S F, Chen Y. In situ observation of austenite grain growth and transformation temperature in coarse grain heat affected zone of Ce-alloyed weld metal [J]. J. Rare Earths, 2017, 35: 203
[18] Yue L J, Han J S, Wang L M. Study on nonmetallic inclusions and pitting corrosion resistance of RE weathering steel [J]. Chin. Rare Earth, 2013, 34(3): 13
[18] (岳丽杰, 韩金生, 王龙妹. 稀土耐候钢中的夹杂物及耐点蚀性能研究 [J]. 稀土, 2013, 34(3): 13)
[19] Yue L J, Wang L L, Wang L M. Influence of rare earth element on the mechanical properties of clean weathering steel [J]. Chin. Rare Earth, 2014, 35(6): 20
[19] (岳丽杰, 汪磊丽, 王龙妹. 微量稀土对洁净耐候钢力学性能的影响 [J]. 稀土, 2014, 35(6): 20)
[20] Wen Z, Yi D Q, Wang B, et al. Effect of rare earths on the recrystallization behavior of T91 heat-resistant steel [J]. J. Univ. Sci. Technol. Beijing, 2013, 35: 1000
[20] (文 智, 易丹青, 王 斌等. 稀土对T91耐热钢动态再结晶行为影响 [J]. 北京科技大学学报, 2013, 35: 1000)
[21] Fu X Y, Yang J C, Jiang X Z, et al. Effects of Ce on the inclusions and impact toughness of T91 heat-resistant steel [J]. Chin. Rare Earth, 2015, 36(5): 60
[21] (富晓阳, 杨吉春, 蒋学智等. Ce对T91耐热钢夹杂物的变质及冲击韧性的影响 [J]. 稀土, 2015, 36(5): 60)
[22] Wang M J, Li Y M, Wang Z X, et al. Effect of rare earth elements on the thermal cracking resistance of high speed steel rolls [J]. J. Rare Earth, 2011, 29: 489
[23] Liu H H, Fu P X, Liu H W, et al. Carbides evolution and tensile property of 4Cr5MoSiV1 die steel with rare earth addition [J]. Metals, 2017, 7: 436
[24] Ali Hamidzadeh M, Meratian M, Saatchi A. Effect of cerium and lanthanum on the microstructure and mechanical properties of AISI D2 tool steel [J]. Mater. Sci. Eng., 2013, A571: 193
[25] Xie Y, Cheng G G, Chen L, et al. Generating mechanism of large heterogeneous carbonitrides with multiple layers in H13+Nb Bar [J]. Steel Res. Int., 2017, 88: 1600119
[26] Xie Y, Cheng G G, Chen L, et al. Characteristics and generating mechanism of large precipitates in Nb-Ti-microalloyed H13 tool steel [J]. ISIJ Int., 2016, 56: 995
[27] Huang Y, Cheng G G, Li S J, et al. Precipitation behavior of large primary carbides in cast H13 steel [J]. Steel Res. Int., 2019, 90: 1900035
[1] 何贤美, 童六牛, 高成, 王毅超. Nd含量对磁控溅射Si(111)/Cr/Nd-Co/Cr薄膜结构与磁性的影响[J]. 金属学报, 2019, 55(10): 1349-1358.
[2] 黄宇, 成国光, 谢有. 稀土Ce对钎具钢中夹杂物的改质机理研究[J]. 金属学报, 2018, 54(9): 1253-1261.
[3] 于宣, 张志豪, 谢建新. 不同Ce含量Fe-6.5%Si合金的组织、有序结构和中温拉伸塑性[J]. 金属学报, 2017, 53(8): 927-936.
[4] 邹建雄,刘波,林黎蔚,任丁,焦国华,鲁远甫,徐可为. MoC掺杂钌基合金无籽晶阻挡层微结构及热稳定性研究[J]. 金属学报, 2017, 53(1): 31-37.
[5] 郭巍巍,齐成军,李小武. 共轭和临界双滑移取向Cu单晶体疲劳位错结构的热稳定性研究*[J]. 金属学报, 2016, 52(6): 761-768.
[6] 刘刚, 李超, 马野, 张瑞君, 刘勇凯, 沙玉辉. 异步轧制硅钢表面纳米结构稳定性与渗硅行为*[J]. 金属学报, 2016, 52(3): 307-312.
[7] 杨滨, 李鑫, 罗文东, 李宇翔. 微量添加Sn和Nb对Zr-Cu-Fe-Al块体非晶合金热稳定性和塑性的影响[J]. 金属学报, 2015, 51(4): 465-472.
[8] 刘政, 刘小梅, 朱涛, 谌庆春. 低频电磁搅拌对半固态铝合金中稀土分布的影响[J]. 金属学报, 2015, 51(3): 272-280.
[9] 张金祥, 黄进峰, 王和斌, 卢林, 崔华, 张济山. 喷射成形H13钢的组织与力学性能*[J]. 金属学报, 2014, 50(7): 787-794.
[10] 王明, 马党参, 刘振天, 周健, 迟宏宵, 代建清. Nb对芯棒用H13钢偏析、液析碳化物及力学性能的影响*[J]. 金属学报, 2014, 50(3): 285-293.
[11] 周小卫,沈以赴. Ni-CeO2纳米镀层在酸性NaCl溶液中的腐蚀行为及电化学阻抗谱特征[J]. 金属学报, 2013, 49(9): 1121-1130.
[12] 刘印,刘铁,王强,王慧敏,王丽,赫冀成. 强磁场热处理对TbFe2和Tb0.27Dy0.73Fe1.95合金晶体取向、微观形貌和磁致伸缩性能的影响[J]. 金属学报, 2013, 49(9): 1148-1152.
[13] 柳文波,张弛,杨志刚,夏志新,高古辉,翁宇庆. 表面纳米化对低活化钢的组织及其热稳定性的影响[J]. 金属学报, 2013, 49(6): 707-716.
[14] 孙术发,狄士春,吕鹏翔,韦东波,喻杰,郭豫鹏. 稀土镁合金微细电火花加工变质层微观结构及性能研究[J]. 金属学报, 2013, 49(2): 251-256.
[15] 张立东,王飞,陈顺礼,汪渊. AlCrTaTiNi/(AlCrTaTiNi)N双层扩散阻挡层的制备及热稳定性[J]. 金属学报, 2013, 49(12): 1611-1616.